Что такое пространственная дискретизация как она осуществляется. Пространственная дискретизация. Пример расчета видеопамяти для отображения на мониторе растрового изображения

Аналоговый и дискретный способы представления изображений и звука

Человек способен воспринимать и хранить информацию в форме образов (зрительных, звуковых, осязательных, вку­совых и обонятельных).

Зрительные образы могут быть со­хранены в виде изображений (рисунков, фотографий и так далее), а звуковые - зафиксированы на пластинках, магнитных лентах, лазерных дисках и так далее.

Информация, в том числе графическая и звуковая, может быть представлена в аналоговой или дискретной форме .

При аналоговом представлении физическая величина при­нимает бесконечное множество значений, причем ее значе­ ния изменяются непрерывно .

При дискретном представле­ нии физическая величина принимает конечное множество значений, причем ее величина изменяется скачкообразно.

https://pandia.ru/text/78/427/images/image002_72.jpg" align="left" width="204" height="136 src=">В процессе кодирова­ния изображения производится его пространственная диск­ ретизация. Пространственную дискретизацию изображе­ния можно сравнить с построением изображения из мозаики (большого количества маленьких разноцветных стекол). Изображение разбивается на отдельные маленькие фрагменты (точки), причем каждому фрагменту присваива­ется значение его цвета, то есть код цвета (красный, зеле­ный, синий и так далее) Рис. 2 Пространственная дискретизация

изображения

Качество кодирования изображения зависит от двух па­ раметров.

Во-первых , качество кодирования изображения тем выше, чем меньше размер точки и соответственно боль­шее количество точек составляет изображение.

Во-вторых, чем большее количество цветов, то есть боль­шее количество возможных состояний точки изображения, используется, тем более качественно кодируется изображение), (каждая точка несет большее количество информации). Совокупность используемых в наборе цветов образует палитру цветов.

Формирование растрового изображения .

Графическая ин­ формация на экране монитора представляется в виде растро­ вого изображения , которое формируется из определенного ко­личества строк, которые в свою очередь содержат определенное количество точек (пикселей).

Качество изображения определяется разрешающей спо­ собностью монитора , т. е. количеством точек, из которых оно складывается.

Чем больше разрешающая способность, то есть чем больше количество строк растра и точек в стро­ ке, тем выше качество изображения.

В современных персо­нальных компьютерах обычно используются три основные разрешающие способности экрана: 800 х 600, 1024 х 768 и 1280 х 1024 точки.

Рассмотрим формирование на экране монитора растрово­го изображения, состоящего из 600 строк по 800 точек в каждой строке (всего точек). В простейшем случае (черно-белое изображение без градаций серого цвета) каж­дая точка экрана может иметь одно из двух состояний - «черная» или «белая», то есть для хранения ее состояния необходим 1 бит.

Цветные изображения формируются в соответствии с двоичным кодом цвета каждой точки, хранящимся в видеопамяти (рис. 3).
Видеопамять

№ точки

Двоичный код цвета точки

Рис. 3. Формирование растрового изображения

¿Цветные изображения могут иметь различную глубину цвета, которая задается количеством битов, используемым для кодирования цвета точки. Наиболее распространенными значениями глубины цвета являются 8, 16,24 или 32 бита

Качество двоичного кодирования изображения определяется разрешающей способностью экра­на и глубиной цвета.

Каждый цвет можно рассматривать как возможное состо­яние точки, тогда количество цветов, отображаемых на эк­ране монитора, может быть вычислено по формуле

N = 2 i ,
где i - глубина цвета

Таблица 4. Глубина цвета и количество отображаемых цветов

Глубина цвета (i )

Количество отображаемых цветов (N )

Цветное изображение на экране монитора формируется за счет смешивания трех базовых цветов: красного, зеленого и синего. Такая цветовая модель называется RGB -моделью по первым буквам английских названий цветов (Red , Green , Blue ).

Для получения богатой палитры цветов базовым цветам могут быть заданы различные интенсивности.

Например, при глубине цвета в 24 бита на каждый из цветов выделяется по 8 бит, то есть для каждого из цветов возможны N = 28= 256 уровней интенсивности, заданные двоичными кодами (от минимальной - до максимальной -) табл. 5

Таблица.5. Формирование цветов при глубине цвета 24 бита

Название цвета

Интенсивность

Красный

Зеленый

Синий

Синий

Желтый

Графический режим.

Графический режим вывода изобра­ жения на экран монитора определяется величиной разрешаю­ щей способности и глубиной цвета.

Для того чтобы на экране монитора формировалось изображение, информация о каждой его точке (код цвета точки) должна храниться в видеопамяти компьютера.

Рассчитаем необходимый объем видеопамяти для одного из графических режимов, например, с разрешением 800 х 600 точек и глубиной цвета 24 бита на точку.

Всего точек на экране: 800 600 =

Необходимый объем видеопамяти:

24 бит =бит = 1 байт =

1406,25 Кбайт = 1,37 Мбайт.

Аналогично рассчитывается необходимый объем видеопа­мяти для других графических режимов.

В Windows предусмотрена возможность выбора графиче­ского режима и настройки параметров видеосистемы компь­ютера, включающей монитор и видеоадаптер.

Установка графического режима

1. Щелкнуть по индикатору Экран на Панели задач , появится диалоговая панель Свойства: Экран . Выбрать вкладку Настрой­ ка, которая информирует нас о марке установленных мо­нитора и видеоадаптера и предоставляет возможность установить графический ре­жим экрана (глубину цвета и разрешающую способность).

2. Щелкнуть по кнопке Допол­нительно , появится диало­говая панель, на которой вы­брать вкладку Адаптер. На вкладке имеется инфор­мация о фирме-производите­ле, марке видеоадаптера, объеме видеопамяти и др. С помощью раскрывающего­ся списка можно выбрать оп­тимальную частоту обновле­ния экрана.

Вопросы для размышления

1. В чем состоит суть метода пространственной дискретизации?

2. Объясните принцип формирования растрового изображения.

3. Какими параметрами задается графический режим, в котором
изображения выводятся на экран монитора?

Двоичное кодирование звуковой информации

Временная дискретизация звука.

¿ Звук представляет собой звуковую волну с непрерывно меняющейся амплитудой и ча­стотой. Чем больше амплитуда сигнала, тем он громче для человека, чем больше частота сигнала, тем выше тон.

Для того чтобы компьютер мог обрабатывать звук, непрерывный звуковой сигнал должен быть превращен в последователь­ность электрических импульсов (двоичных нулей и единиц).

В процессе кодирования непрерывного звукового сигнала производится его временная дискретизация.

Непрерывная звуковая волна разбивается на отдельные маленькие вре­менные участки, причем для каждого такого участка уста­навливается определенная величина амплитуды.

Таким образом, непрерывная зависимость амплитуды сиг­нала от времени A (t ) заменяется на дискретную последователь­ность уровней громкости. На графике это выглядит как заме­на гладкой " кривой на последовательность «ступенек» - рис. 6.

Каждой «ступеньке» присваивается значение уровня гром­кости звука, его код (1, 2, 3 и так далее). Уровни громкости звука можно рассматривать как набор возможных состояний, соответственно, чем большее количество уровней громкости будет выделено в процессе кодирования, тем большее количе­ство информации будет нести значение каждого уровня и тем более качественным будет звучание.

Современные звуковые карты обеспечивают 16-битную глубину кодирования звука. Количество различных уровней сигнала (состояний при данном кодировании) можно рассчи­тать по формуле

N = 2 i , = 216 = 65536, где i - глубина звука.

Таким образом, современные звуковые карты могут обеспе­ чить кодирование 65536 уровней сигнала. Каждому значению амплитуды звукового сигнала присваивается 16-битный код.

При двоичном кодировании непрерывного звукового сиг­нала он заменяется последовательностью дискретных уров­ней сигнала.

Качество кодирования зависит от количества измерений уровня сигнала в единицу времени, то есть час­ тоты дискретизации.

Чем большее количество измерений производится за 1 секунду (чем больше частота дискретиза­ции), тем точнее процедура двоичного кодирования/

Качество двоичного кодирования звука определя­ ется глубиной кодирования и частотой дискрети зации.

Количество измерений в секунду может лежать в диапа­зоне от 8000 до, то есть частота дискретизации ана­логового звукового сигнала может принимать значения от 8 до 48 кГц. При частоте 8 кГц качество дискретизированного звукового сигнала соответствует качеству радиотрансляции, а при частоте 48 кГц - качеству звучания аудио-CD. Следу­ет также учитывать, что возможны как моно-, так и стерео-режимы.

Можно оценить информационный объем стереоаудиофайла длительностью звучания 1 секунда при высоком качестве звука (16 битов, 48 кГц).

Для этого количество битов, при­ходящихся на одну выборку, необходимо умножить на ко­личество выборок в 1 секунду и умножить на 2 (стерео):

16 бит 2 = 1 бит = байт = = 187,5 Кбайт.

Стандартное приложение Звукозапись играет роль цифро­вого магнитофона и позволяет записывать звук, то есть ди-скретизировать звуковые сигналы, и сохранять их в звуко­вых файлах в формате WAV. Эта программа позволяет редактировать звуковые файлы, микшировать их (наклады­вать друг на друга), а также воспроизводить.

Вопросы для размышления

1. В чем состоит принцип двоичного кодирования звука?

2. От каких параметров зависит качество двоичного кодирования звука?




  • Графические изображения из аналоговой (непрерывной) формы в цифровую (дискретную) преобразуются путем пространственной дискретизации.
  • Пространственную дискретизацию изображения можно сравнить с построением изображения из мозаики (большого количества маленьких разноцветных стекол).
  • Изображение разбивается на отдельные маленькие элементы (точки, или пиксели), причем каждый элемент может иметь свой цвет (красный, зеленый, синий и т. д.).



  • Важнейшей характеристикой качества растрового изображения является разрешающая способность.
  • Разрешающая способность растрового изображения определяется количеством точек как по горизонтали, так и по вертикали на единицу длины изображения.
  • Чем меньше размер точки, тем больше разрешающая способность и, соответственно, выше качество изображения.
  • 1 дюйм = 2,54 см

  • В процессе дискретизации могут использоваться различные палитры цветов, т. е. наборы цветов, в которые могут быть окрашены точки изображения.
  • Каждый цвет можно рассматривать как возможное состояние точки.
  • Количество цветов N в палитре и количество информации I , необходимое для кодирования цвета каждой точки, связаны между собой и могут быть вычислены по формуле:

2 = 2 i = 2 1 = 2 i = i=1 бит.



Глубина цвета, (битов)

Количество цветов в палитре, N

2 24 =16 777 216


  • Качество изображения на экране монитора зависит от величины пространственного разрешения и глубины цвета.
  • Пространственное разрешение экрана монитора определяется как произведение количества строк изображения на количество точек в строке. Монитор может отображать информацию с различными пространственными разрешениями (800 х 600, 1024 х 768, 1152 х 864 и выше).

  • Чем больше пространственное разрешение и глубина цвета, тем выше качество изображения.
  • В операционных системах предусмотрена возможность выбора необходимого пользователю и технически возможного графического режима.

  • Информационный объем требуемой видеопамяти можно рассчитать по формуле:
  • где I - информационный объем видеопамяти в битах;
  • X Y - количество точек изображения (X - количество точек по горизонтали, Y - по вертикали);
  • I - глубина цвета в битах на точку.

  • Пример: необходимый объем видеопамяти для графического режима с пространственным разрешением 800 х 600 точек и глубиной цвета 24 бита равен:
  • 1 п = I *X *У = 24 бита х 800 х 600 = 11 520 000 бит = = 1 440 000 байт = 1 406,25 Кбайт ~ 1,37 Мбайт.

  • Качество отображения информации на экране монитора зависит от размера экрана и размера пикселя. Зная размер диагонали экрана в дюймах (15", 17" и т. д.) и размер пикселя экрана (0,28 мм, 0,24 мм или 0,20 мм), можно оценить максимально возможное пространственное разрешение экрана монитора.

В те времена, когда еще компьютеры обладали не настолько мощными возможностями, как сейчас, ни о каком преобразовании изображений на бумаге или на пленке не могло быть и речи. Сейчас же принято считать, что таким объектам соответствует аналоговая форма. С появлением новых технологий стало возможным производить оцифровку (например, при помощи сканеров). Благодаря этому появилась так называемая дискретная форма изображений. Но каким же образом производится перевод графики из одной формы в другую? Кратко о сути таких методов далее и будет рассказано максимально подробно и просто, чтобы каждый пользователь понял, о чем идет речь.

Что такое пространственная дискретизация в информатике?

Для начала рассмотрим общее понятие, объяснив его самым простым языком. Из одной формы в другую графическое изображение преобразуется путем пространственной дискретизации. Чтобы понять, что это такое, рассмотрим простой пример.

Если взять какую-нибудь картину, написанную акварельными красками, нетрудно заметить, что все переходы являются плавными (непрерывными). А вот на отсканированном изображении, которое было напечатано на струйном принтере, таких переходов нет, поскольку оно состоит из множества мелких точек, называемых пикселями. Получается, что пиксель - это своего рода строительный кирпичик, который обладает определенными свойствами (например, имеет свой цвет или оттенок). Из таких кирпичиков и складывается полное изображение.

В чем состоит суть метода пространственной дискретизации?

Если говорить о сути самого метода преобразования графики при помощи таких технологий, можно привести еще один пример, который поможет понять, как это все работает.

Оцифрованные изображения, что при сканировании, что при выводе на экран компьютерного монитора, что при печати, можно сравнить еще и неким подобием мозаики. Только здесь в качестве одного кусочка мозаики выступает пиксель. Это есть одна из основных характеристик всех современных устройств. Как уже можно было догадаться, чем больше таких точек, и чем меньше размер каждой из них, тем более плавными будут переходы. В конечном счете именно их количество для каждого конкретного устройства определяет его разрешающую способность. В информатике для такой характеристики принято рассчитывать количество пикселей (точек) на дюйм (dpi - dot per inch), причем и вертикальном, и в горизонтальном направлении.

Таким образом, создается двумерная пространственная сетка, чем-то напоминающая обычную систему координат. Для каждой точки в такой системе можно задавать собственные параметры, которые будут отличаться от соседних точек.

Факторы, влияющие на качество кодирования

Но не только вышеописанные примеры в полной мере отражают то, как работает пространственная дискретизация. Кодирование графической информации учитывает еще несколько важных параметров, от которых зависит качество оцифрованного изображения. Они применяются не только к самим изображениям, но и к воспроизводящим графику устройствам.

В первую очередь, сюда относят следующие характеристики:

  • частота дискретизации;
  • глубина цвета.

Частота дискретизации

Под частотой дискретизации понимается размер фрагментов, из которых состоит изображение. Этот параметр в равной степени можно встретить в характеристиках оцифрованных изображений, сканеров, принтеров, мониторов и графических карт.

Правда, тут есть одна загвоздка. Дело в том, что при повышении общего числа точек можно получить более высокую частоту. Но ведь при этом соответственно в большую сторону меняется и размер файла сохраняемого исходного объекта. Чтобы избежать этого, в настоящее время применяется искусственное поддержание размера на одном постоянном уровне.

Понятие разрешающей способности

Об этом параметре уже было упомянуто. Однако если посмотреть на устройства вывода изображений, тут картина несколько другая.

В качестве примера параметров, которые использует пространственная дискретизация, рассмотрим сканеры. Так, например, в характеристиках устройства указано разрешение 1200 х 1400 точек на дюйм. Сканирование производится путем перемещения полосы светочувствительных элементов вдоль сканируемого изображения. Но вот первое число обозначает оптическое разрешение самого устройства (количество сканирующих элементов в одном дюйме полосы), а второе относится к аппаратному разрешению и определяет количество «микроперемещений» полосы со сканирующими элементами по изображению при прохождении одного дюйма картинки.

Глубина цвета

Перед нами еще один важный параметр, без учета которого понять в полной мере, что такое пространственная дискретизация. Глубина цвета (или глубина кодирования) обычно выражается в битах (то же самое, кстати, можно отнести и к глубине звука) и определяет количество цветов, которые были задействованы при построении изображения, но в конечном итоге относится к палитрам (наборам цветов).

Например, если рассмотреть черно-белую палитру, в которой содержится всего два цвета (без учета градаций оттенков серого), количество информации при кодировании каждой точки можно вычислить по приведенной формуле, учитывая, что N - общее количество цветов (в нашем случае N=2), а I - количество состояний, которые может принимать каждая точка (в нашем случае I=1, поскольку вариантов может только два: или черный, или белый цвет). Таким образом, N I =2 1 =1 бит.

Квантование

Пространственная дискретизация также может учитывать и параметр, называемый квантованием. Что это такое? В чем-то это напоминает методику интерполирования.

Суть процесса состоит в том, что величина отсчета сигнала заменяется ближайшим соседним значением из фиксированного набора, который представляет собой список уровней квантования.

Чтобы лучше разобраться, как преобразовывается графическая информация, посмотрите на изображение выше. На нем представлена графика в исходной (аналоговой форме), изображение с применение квантования и побочные искажения, называемые шумами. На втором фото сверху можно увидеть своеобразные переходы. Они носят название шкалы квантования. Если все переходы одинаковы, шкала называется равномерной.

Цифровое кодирование

При преобразовании графической информации следует учесть, что, в отличие от аналогового сигнала, квантовый сигнал может принимать только совершенно определенное фиксированное количество значений. Это позволяет преобразовать их в набор символов и знаков, последовательность которых называют кодом. Финальная последовательность называется кодовым словом.

Каждое кодовое слово соответствует одному интервалу квантования, а для кодирования используется двоичный код. При этом иногда следует еще учитывать и скорость передачи данных, которая представляет собой произведение частоты дискретизации на длину кодового слова и выражается в битах в секунду (bps). Грубо говоря, это не что иное, как максимально возможное количество передаваемых двоичных символов в единицу времени.

Пример расчета видеопамяти для отображения на мониторе растрового изображения

Наконец, еще один важный аспект, связанный с тем, что представляет собой пространственная дискретизация. Растровые изображения на экране монитора воспроизводятся по определенным правилам и требуют затрат памяти.

Например, на мониторе установлен графический режим с разрешением 800 х 600 точек на дюйм и глубиной цвета 24 бит. Общее количество точек будет равно 800 х 600 х 24 бит = 11 520 000 бит, что соответствует или 1 440 000 байт, или 1406,25 Кб, или 1,37 Мб.

Способы сжатия видеоинформации

Технология пространственной дискретизации, как уже понятно, применима не только к графике, но и к видеоизображениям, которые в некотором смысле тоже можно отнести к графической (визуальной) информации. Правда, оцифровка такого материала до некоторых пор производилась с ограниченными возможностями, поскольку конечные файлы оказывались такими огромными, что держать их на компьютерном жестком диске было нецелесообразно (вспомните хотя бы исходный формат AVI, в свое время разработанный специалистами компании Microsoft).

С появлением алгоритмов M-JPEG, MPEG-4 и H.64 стало возможно уменьшать конечные файлы с коэффициентом уменьшения размера в 10-400 раз. Многие могут возразить по поводу того, что сжатое видеоизображение будет иметь более низкое качество по сравнению с оригиналом. В некотором смысле так оно и есть. Однако в таких технологиях уменьшение размера можно производить и с потерей качества, и без потерь.

Различают два основных метода, по которым производится сжатие: внутрикадровое и межкадровое. Оба таких варианта основаны на исключении из изображения повторяющихся элементов, однако не затрагивают, например, изменения яркости, цвета и т.д. Что в первом, что во втором случае, разница между сценами в одном кадре или между двумя соседними является незначительной, поэтому разница на глаз особо не заметна. Зато при удалении из файла вышеуказанных элементов, разница в размере между исходным и конечным изображением весьма существенная.

Одним из самых интересных, хотя и довольно сложных методов, которые использует пространственная дискретизация для сжатия изображений, является технология, получившая название дискретного косинусного преобразования, предложенная В. Ченом в 1981 году. Основана она на матрице, в которой, в отличие от исходной, описывающей только величины отсчетов, представлены значения скорости их изменения.

Таким образом, ее можно рассматривать, как некую сетку изменения скоростей в вертикальном и горизонтальном направлениях. Размер каждого блока определяется технологией JPEG и имеет размер 8 х 8 пикселей. А вот сжатие применяется к каждому отдельно взятому блоку, а не к целому изображению. Таким образом, разница между исходным и конечным материалом становится еще менее заметной. Иногда в компьютерной терминологии такую методику называют еще субдискретизацией.

Далее для яркости и цветности может применяться описанное выше квантование, при котором каждая величина косинусного преобразования делится на коэффициент квантования, который можно найти в специальных таблицах, полученных на основе так называемых психофизических тестов.

Сами же таблицы соответствуют строго определенным классам блоков, сгруппированных по активности (равномерное изображение, неструктурированное изображение, горизонтальный или вертикальный перепад и т.д.). Иными словами, для каждого блока устанавливаются свои собственные значения, которые неприменимы к соседним или тем, что отличаются классом.

Наконец, после квантования на основе кода Хаффмана производится удаление избыточных коэффициентов (сокращение избыточности), что позволяет получить для последующего кодирования кодовое слово с длиной менее одного бита для каждого коэффициента (VLC). Далее формируется линейная последовательность, для которой применяется метод зигзагообразного считывания, что группирует значения в конечной матрице в виде значащих величин и последовательностей нулей. А вот как раз их и можно убрать. Остальные комбинации сжимаются стандартным способом.

А вообще, специалисты особо не рекомендуют производить кодирование графической информации с использованием технологий JPEG, поскольку они имеют ряд недостатков. Во-первых, многократное пересохранение файлов неизменно приводит к ухудшению качества. Во-вторых, из-за того, что объекты, закодированные при помощи JPEG, не могут содержать прозрачных областей, применять такие методы к графическим изображениям или сканируемым образцам художественной графики можно только в том случае, если они по вертикали и горизонтали не превышают размер в 200 пикселей. В противном случае ухудшение качества конечного изображения будет выражено очень ярко.

Правда, алгоритмы JPEG стали основой для технологий сжатия MPEG, а также для множества стандартов конференц-связи вроде H.26X и H32X.

Вместо послесловия

Вот кратко и все, что касается понимания вопросов, связанных преобразованием аналоговой формы графики и видео в дискретную (по аналогии такие методики используются и для звука). Описанные технологии достаточно сложны для понимания рядовым пользователем, однако некоторые важные составляющие основных методик понять все-таки можно. Здесь не рассматривались вопросы настройки мониторов для получения максимально качественной картинки. Однако по интересующему нас вопросу можно отметить, что устанавливать максимально возможное разрешение стоит не всегда, поскольку завышенные параметры могут привести к неработоспособности устройства. То же самое касается и частоты обновления экрана. Лучше использовать рекомендованные производителем значения или те, которые операционная система после установки соответствующих драйверов и управляющего программного обеспечения предлагает использовать по умолчанию.

Что же касается самостоятельного сканирования или перекодирования информации из одного формата в другой, следует использовать специальные программы и конвертеры, однако для того, чтобы избежать понижения качества, максимально возможным сжатием с целью уменьшения размеров конечных файлов, лучше не увлекаться. Такие методы применимы только для тех случаев, когда информацию нужно сохранить на носителях с ограниченным объемом (например, CD/DVD-диски). Но в случае наличия достаточного места на винчестере, или когда требуется создать презентацию для трансляции на большом экране, или распечатать фотографии на современном оборудовании (фотопринтеры не в счет), качеством лучше не пренебрегать.

Кардинальной проблемой численного моделирования миграцион­ных процессов является дискретизация в пространстве и во време­ни. При пространственной дискретизации наиболее часто употреб­ляются метод конечных разностей (МКР) и метод конечных эле-

Рис. 24. Схема квадратной ячейки сеточной модели миграционного потока:

■а - параметры свойств; б - результаты миграционного расчета. / - первичные результаты; 2 - билинейная интерполяция; 3 к 4 - расчетный и соседние узлы сеткн.

Ментов (МКЭ), основные положення которых описаны, например, в работах . В дальнейшем будем рассматривать только МКР, позволяющий более наглядно представить разност­ную модель процесса. При этом используются консервативные раз­ностные схемы, в основе которых находится составление баланса вещества в блоке (ячейке), относящемся к каждой узловой точке (метод составных ячеек ).

При этом для каждой ячейки определяют конвективные прито­ки и оттоки мигрантов при помощи линейной интерполяции между соседними узлами (что соответствует основной разности МКР) или используют значение концентраций с узла, из которого поступает мигрант (что соответствует обратной разности МКР). Для опре­деления притока и оттока мигранта вследствие дисперсии исполь­зуются также первые частные производные концентрации с пер­пендикулярно и параллельно границам ячеек, которые можно би­линейно установить по соседним значениям.

Рассмотрим основные положения решения проблемы дискрети­зации применительно к двумерному конвективно-дисперсионному потоку в гомогенной среде с учетом процессов распада по уравне­нию (3.8) при Кос-Я и действия миграционных источников-стоков с интенсивностью w. В таком случае дифференциальное уравнение конвективно-диффузионного переноса нейтрального мигранта в двумерном потоке (с координатами xt при хх=х и х2-у) имеет вид

TOC \o "1-3" \h \z д / г\ дс \ , де і, дс,

ID,------ І + ^і------------ ас 4- w = л0 -- . (7.1)

Если знак q выявляется только в результате расчета, то в об­щем справедливо соотношение

2qmkc _ (gtnk _J_ gmk) ck _J_ (qtnk _ [ qmk I)

Таким образом, получают линейную систему уравнений с п уравнениями (л - число ячеек с определяемыми значениями с), асимметричная матрица коэффициентов которых указывает на каждые четыре занятых верхних и нижних кодиагонала наряду с основными диагоналями. Изображаемые таким способом вычисли­тельные модели миграции примерно равнозначны моделям (мат­ричным уравнениям), сформулированным с помощью нормального МКР, а также моделям МК. Э с помощью линейной аппроксимации функций. Преимущество такой системы состоит в том, что здесь гарантируется максимальная наглядность математического описа­ния процесса.

В настоящее время при численном моделировании миграции почти исключительно используют для временной производной част­ную разность первого порядка и строят модель миграции, учитывая важность двух временных уровней. Тогда уравнение (7.1) для ми­грационной модели имеет вид

Неявная (см. рис. 25, б); у=\/2- Кранка - Никольсона (см. рис. 25, в); 7=2/3 - Галеркина (см. рис. 25, в).

Для Vе (0; 2/3; 1) доказывается порядок аппроксимации 0(Д0 и для y=: 1/2-0 (Дt) , Из разложения функций в ряд Тейлора сле­дует, что численную дисперсию вызывают как

Требует тонкой дискретизации. Даже обеспечение возможности коррекции коэффициента дисперсии DKop согласно выражению

TOC \o "1-3" \h \z Асор = D - [ I * I Д*/2 + А^2/(2я0)] > 0 (7:6)

Не исключает значительных затрат по дискретизации^ Для харак­теристики дискретизации процессов миграции пользуются безмер­ными числами, получаемыми из уравнения (7.3):

0 I v I Ах Ах Дtv* At I v I Редх = --! ж и Di

А для характеристики осцилляций - производными характеристи­ками

РеЛд: П0 Ах Ах П0 Ах2

Из уравнения следует, что значительные затраты на простран­ственную дискретизацию миграционных процессов оправданы лишь, когда одинаковый порядок величин имеет также погреш­ность временной дискретизации. Поэтому схема Крайка-Николь - сона с погрешностью порядка At2 часто используется в моделиро­вании, несмотря на связанные с этим опасения в отношении ста­бильности. Ее повышение достигается с помощью метода «предик­тор-корректор» Г10]. При этом согласно неявной схеме решения (Y=1) рассчитывается полушаг At/2 при исходном положении всех параметров ко времени t и определяются значения с*+Л(12. Затем по схеме Крайка-Никольсона (у= 1/2) реализуется весь шаг At, причем все параметры миграции, члены источников-стоков, обмена и замещения, а также член конвекции задаются на момент времени t+At/2. Таким образом, вычислительная модель уравне­ния (7.2) при полном шаге получается в таком виде (см. рис. 25):

Причем для dc/dt надо подставить одно-, дву - или трехмерное ис­ходное.дифференциальное уравнение, а для d2c/dt2 его производ­ную. Наконец, очень значительная точность аппроксимации дости­гается благодаря тому, что временная производная учитывается не только в точке п (это в общем виде относится также к членам источников-стоков ic и да), но и на соседних узлах. В наиболее простой форме эту подстановку осуществляют по правилу Симп - сона: dc/dt-(1/6) [{dc/dt)a-.i+4(dc/dt)n+(dc/di)n-1].

На рис. 25, е приведена также конечно-разностная схема для одномерных процессов миграции, предложенная Г. Стояном. Эта схема дает возможность управлять вычислением всех частных про­изводных и получать стабильные и точные численные решения, особенно для случаев чистой дисперсии или чистой конвекции.

Выбранный численный метод пригоден лишь в тех случаях, когда численное решение стремится к точному при уменьшающейся ширине. шага, т. е. когда этот метод является сходящимся.

Численная дисперсия вызывается прежде всего дискретностью членов:конвекции и емкости (аккумуляции), т. е. первыми произ­водными зависимых переменных. Это может приводить к значи­тельным погрешностям при моделировании миграционных процес­сов с? небольшим коэффициентом дисперсии £>, величина которых для различных численных моделей миграции получается в зависи­мости от Ре^лг и числа Di или Сг. Благодаря введению исправ< ленных. коэффициентов дисперсии [см., например, уравнение (7.6)] значительно уменьшаются погрешности и в простых дискретных схемах. (Стабильные обратные разности членов конвекции и акку­муляции, а также МК. Э с линейными пространственными и вре­менными начальными функциями приводят к значительной числен­ной дисперсии или требуют очень тонкой локальной и временной дискретизации.

Численные осцилляции происходят в определенных условиях и, как правило, определяются сравнением с соответствующими ана­литическими решениями. Опасность колебаний возникает преиму­щественно в процессах с доминирующей конвекцией. Особенно под­вержены осцилляциям схема Кранка-Никольсона, основная раз­ность членов конвекции или аккумуляции и формулировка МКЭ
по схеме Галеркина с линейными функциями. Вместе с тем неяв­ная схема, обратные разности членов конвекции и аккумуляции, а также формулировка МК. Э по Ритцу и по Галеркину с много­кратной коллокацией в значительной мере свободны от осцилля - ций. Вместе с тем чем «нейтральнее» численная схема, тем она точнее и чувствительнее к нарушениям. Поэтому применяемая на практике численная схема постоянно является компромиссом меж­ду обеими тенденциями.

Наряду с погрешностями дискретности имеют значение также погрешности в стабильности, вытекающие из ограниченного коли­чества численных расчетов. Безусловно стабильной считается чис­ленная модель миграции, если численная погрешность (округле­ния) уменьшается от одного временного шага к другому, а условно стабильной - если это происходит только при определенных усло­виях. Эти условия для особых случаев аналитически представлены в работе . Таким образом, сравнением с аналитическими ре­шениями фиксируется условие стабильности при заданной прост­ранственной дискретизации путем установления критической вели­чины временного шага через критические числа Di или Сг. Без­условно стабильной является неявная схема решения с у-1, при­чем с уменьшением у возрастает склонность к нестабильности. Численное решение составленной системы уравнений (матричное уравнение) также таит в себе возможности погрешностей. К очень большим погрешностям, сильно распространяющимся при услов­ном стабильном методе, может приводить решение системы урав­нений с плохо выраженными условиями, у которых элементы ос­новных диагоналей матрицы коэффициентов в недостаточной сте­пени преобладают по сравнению с основными диагоналями кодиа - гоналей.

Значительные погрешности в решении уравнений может вызы­вать решение всей системы уравнений с помощью частного метода шагов (например, неявного метода переменных направлений) и пе­реноса элементов матрицы коэффициентов в правую ч"асть урав­нений путем умножения на временные или итеративно зависимые переменные с обратной датировкой для создания ленточных мат­риц с незначительной шириной ленты (преимущественно тридиаго - нальные матрицы коэффициентов). По этой причине следует тща­тельно проверять и контролировать программы компьютера па численному моделированию миграции, особенно путем сравнения с аналитическими решениями.

На основе численного решения производится первичное опреде­ление числа опорных точек в пространственно-временной сетке. Число опорных точек по времени или по размеру итерационного шага при нелинейном решении указывает количество определяе­мых локально-дискретных значений зависимых переменных (Я или иногда vx, vy, с) и таким образом влияет на число уравнений си­стемы. Затраты времени на одноразовое решение этой системы уравнений являются основной величиной для оценки затрат; они зависят от типа ЭВМ, используемого метода для решения системы 124 уравнений и качества генерированной вычислительной программы. Если эти затраты умножить на число временных или итерацион­ных шагов, необходимых для моделирования, и прибавить к этому затраты времени на корректирование матриц коэффициентов и правой стороны уравнений, то получится время, необходимое для математического моделирования на ЭВМ. Потребность в месте накопителей для математического моделирования многомерных процессов миграции определяется прежде всего потребностью в месте накопления подпрограммы для решения системы уравнений.

или почему разрешение файла должно превышать линиатуру растра не менее, чем в два раза

Характерной особенностью современных полиграфических систем обработки полутоновых оригиналов является то, что как пространственная дискретизация изображения, так и квантование его тона по уровню осуществляются в них по крайней мере дважды. Пространственная дискретизация - замена изображения, тон которого произвольно изменяется в координатах X и Y, изображением, составленным из отдельных участков - зон, в пределах которых этот параметр усреднен. В общем случае, как уже указывалось, частота дискретизации должна минимум в два раза превышать частоту гармонической составляющей исходного изображения, подлежащей воспроизведению на копии. Это положение схематически поясняет рис. 1 (а), на позиции а) которого исходное непрерывное сообщение есть синусоидальное колебание и(t) с периодом Т. Спектр такого сигнала составляют постоянная составляющая и первая гармоника:

u = U 0 +U l sin(27tt/T)

Рис. 1.

Исходный сигнал (а), значения его выборки и глубина модуляции (%) при нулевой (б), противоположной (в) и промежуточной (г) фазе частоты дискретизации.

При нулевой фазе дискретных отсчётов U D периода Т/2 глубина их модуляции первой гармоникой исходного сигнала равна нулю и информация о частоте целиком утрачивается. Передается лишь среднее значение U 0 исходного сигнала (см. рис. 1, б). С изменением фазы отсчётов на половину их периода глубина модуляции оказывается равной 100% (см. рис. 1, в). Промежуточным между рассмотренными фазам отсчётов сопутствуют искажения амплитуды и фазы первой гармоники, хотя, как показывает график на рис. 1 (г), информация о ее частоте сохраняется. Как минимум одномерная (по одной из координат) дискретизация изображений сопутствует процессу электрооптического анализа. В аналоговых репродукционных системах и в телевидении оптический параметр, являющийся функцией координат оригинала или передаваемой сцены, преобразуется в амплитуду электрического сигнала, изменяющегося на выходе ФЭП во времени при построчном считывании (сканировании). Спектр пространственных частот изображения в направлении, поперечном направлению строчной развертки, ограничивается частотой разложения на строки. В силу конечных размеров сканирующего пятна (апертуры) этот спектр ограничен и вдоль строк частотой, обратной величине этого пятна. Второй причиной ограничения спектра частот и дискретизации изображения вдоль строки является модуляция видеосигналом амплитуд, фаз или частот дополнительного электромагнитного колебания -несущей частоты, необходимой для передачи сигнала, например, в телевидении или в аналоговом дистанционном (с использованием электрических каналов связи) репродуцировании. Двухмерная (по обеим координатам) дискретизация и квантование имеют место при так называемом аналого-цифровом преобразовании видеосигнала, в результате которого совокупность пространственных отсчётов значения тона может быть представлена некоторым массивом чисел, записанных, например, в двоичном коде. Такое представление позволяет отвлечься от времени реального сканирования и производить функциональные преобразования тона, цвета, мелких деталей, контуров и другого содержания изображения как операции над числами этого массива. Для подобных целей ныне эффективно используются ПЭВМ.
Пространственная дискретизация сопутствует и растрированию - представлению изображения в виде совокупности запечатанных и пробельных элементов, относительная площадь которых определяется тоном или цветом соответствующих участков оригинала. При этом, как уже указывалось, частота первой дискретизации, связанной с электрооптическим анализом и аналого-цифровым преобразованием, принимается, как правило, в два раза превышающей линиатуру полиграфического растра, а точнее, частоту растровой функции, внутри периода которой формируется то или иное количество растровых точек и пробелов. Если это условие соблюдается, то при воспроизведении системы периодических штрихов произвольной пространственной фазы размеры соседних точек будут хоть сколько-нибудь отличаться друг от друга во всех случаях кроме одного: когда сами штрихи сдвинуты ровно на половину периода относительно элемента разложения 1 и растровой ячейки. На оттиске вместо штрихов образуется равномерное поле одинаковых растровых точек с относительной площадью 50% (см. рис. 2, г), поскольку коэффициент отражения оригинала, усредненный по площади считывающего пятна I имеет одинаковое (промежуточное) значение для всех элементов растра. В зону отсчета 7 каждый раз попадает по половине штриха и половине пробела (см. рис. 2, в). Этот случай аналогичен представленному на рис. 1 (б).

Рис. 2.
Штрихи частоты 0,51 в растровой решетке линиатуры L при совпадающих (а) и противоположных (в) фазах; их растровые копии: б, г - при считывающем элементе 1 равном шагу линиатуры; д - при отсчётах 2 вдвое меньших шага растра.

Во всех других пространственных фазах контраст штрихов на репродукции оказывается выше, поскольку отличаются значения соседних отсчётов и размеры формируемых в соответствии с ними растровых точек. Максимальное различие имеет место в противоположном крайнем случае, когда, как показано на рис. 2 (а, б), штрихи частоты 0,51 совпадают по фазе с растровой решеткой. Здесь имеет место аналогия со случаем, иллюстрируемым рис. 1 (а, в). Они передаются растром в два раза большей линиатуры, равной L лин/см, без потери контраста. Гарантию передачи штрихов с полным контрастом независимо от их пространственной фазы дает частота разложения, в два раза превышающая растровую линиатуру, как поясняет рис. 2 (д). Поскольку в полиграфическом репродуцировании имеют место как минимум две пространственные дискретизации изображения, из приведенного упрощенного примера следует, что двукратный запас по частоте разложения необходимо предусматривать дважды. В первый раз это приходиться делать при выборе линиатуры растра, если ставится задача воспроизведения на оттиске определенных пространственных частот оригинала. Второй двукратный запас, на этот раз уже по отношению к выбранному значению линиатуры, устанавливается для частоты сканирования оригинала. Например, для воспроизведения штрихов, имеющих на оригинале частоту 4 лин/мм, необходима линиатура оттиска 80 лин/см (~200dpi) (а также соответствующая ей гладкость бумаги и другие параметры печати). Считывать такой оригинал при сканировании приходится уже с частотой 16 лин/мм (~400ppi). Степень разрушения контуров и мелких деталей в растровом процессе несколько снижается, если частота отсчётов в соответствии с положениями теории дискретизации в два раза превышает линиатуру растра (см. рис. 3, д, е).

Рис. 3.
«Воронка» (а) и случайное (б) распределение весовых значений; изображения контура 1, разделяющего на оригинале участки с поглощением 0,94 и 0,04, на основе одного (в, г), четырех (д, е) и 64-х (ж, з) отсчётов на период растра;
2 - зона отсчета анализа

Пересекаемый контуром участок оригинала представляется в этом случае четырьмя различными по значениям отсчётами. Четыре фрагмента соответствующего участка копии формируются по разным знакам «алфавита» точек. Форма площади, запечатываемой внутри участка, модулируется геометрией контура, и последний передается с большей графической точностью и резкостью. Этот эффект наглядно иллюстрирует модель на рис. 4 (г) в сравнении с представленными на рис. 4(б,в).

Рис. 4.
Штриховые элементы (а) полутонового оригинала и их растровые копии с использованием:

  • одного (б, в, д) и четырех (г, е) отсчётов в периоде растровой функции;
  • нерезкого маскирования числового массива (в);
  • смещения растровых точек (д) и их фрагментов (е) на контурах.

Точность передачи контура полного контраста повышается и далее по мере увеличения частоты считывания оригинала и оказывается на уровне разрешающей способности выводного устройства, когда каждому элементу синтеза в исходном видео массиве соответствует независимый многоуровневый отсчет (см. рис. 3, ж, з). Зоны отсчётов, как правило, почти на порядок превышают размеры элементов синтеза и не могут быть существенно уменьшены. Иначе чрезмерно, в среднем на два порядка, возрастают и без того большие, исчисляемые десятками и сотнями мегабайт, объемы иллюстрационных файлов. Соответственно растет емкость устройств хранения, время обработки и обмена видеоинформации между различными модулями и рабочими местами до-печатных систем, время передачи или занимаемая полоса частот при дистанционном репродуцировании. На практике ограничиваются лишь двукратным превышением частоты отсчётов над линеатурой, которому соответствуют примеры на рис. 3 (д, е) и рис. 4 (г). Такие режимы и системы репродуцирования условно относят к системам типа coarse scan/fine print (грубое считывание/четкая печать). Число отсчётов равное числу субэлементов синтеза, т. е. режимы типа fine scan/fine print, встречаются лишь в устройствах вывода непрерывного тона или струйно-капельной цифровой печати при относительно малых форматах изображений, низких разрешающих способностях ввода/вывода (порядка 12-24 лин/мм (300-600dpi)) и в этой связи невысоких линиатурах.