Измерения баллистическим гальванометром. Определение баллистической постоянной гальванометра Что такое баллистическая постоянная

ЛАБОРАТОРНАЯ РАБОТА № 2.14

«ОПРЕДЕЛЕНИЕ ЭЛЕКТРОЁМКОСТИ КОНДЕНСАТОРА С ПОМОЩЬЮ

БАЛЛИСТИЧЕСКОГО ГАЛЬВАНОМЕТРА»

Цель работы : экспериментальное определение динамической постоянной баллистического гальванометра и ёмкости конденсатора.

Описание электрической схемы

Электрическая схема, используемая в настоящей лабораторной работе, представлена на рис. 1. Здесь G – гальванометр баллистический, С – конденсатор, П – переключатель, V – вольтметр, Б – батарея ЭДС.

Рис. 1. Принципиальная схема установки

Когда переключатель П установлен в левое положение, происходит заряд конденсатора от батареи Б и одновременно гальванометр шунтируется критическим сопротивлением (не указанным в схеме). Благодаря этому рамка его устанавливается в положение равновесия. Когда переключатель П установлен в правое положение, конденсатор разряжается через гальванометр.

Пояснения к работе

Баллистический гальванометр предназначен для измерения количества электричества, протекающего через его рамку за время, значительно меньше периода её собственных колебаний. Баллистический гальванометр отличается от обычного гальванометра магнитоэлектрической системы тем, что подвижная часть его делается более массивной и обладает большим моментом инерции j .

Рис. 2. Устройство гальванометра баллистического гальванометра.

Рис. 3. Схема устройства баллистического гальванометра (вид сверху).

Проволочная рамка 1 и цилиндр из мягкого железа 2 подвешены на металлической нити в кольцевом зазоре между полюсами постоянного магнита N и S. Нить снабжена зеркальцем. Для измерения отклонения рамки от положения равновесия используется луч света, который направляется от лампочки на зеркальце и, отразившись от него, попадает на шкалу.

При кратковременном протекании тока J на рамку 1 со стороны внешнего магнитного поля действует пара сил Ампера , создающая вращающий момент.



Длительность импульса тока t много меньше периода собственных колебаний рамки Т (t << Т ), т.к. подвижная часть гальванометра имеет большой момент инерции (из-за цилиндра 2). Поэтому воздействие на рамку момента сил Ампера имеет характер "удара" (отсюда название гальванометра).

При повороте рамки ее кинетическая энергия переходит в потенциальную энергию закрученной нити. Вместе с рамкой на угол a 0 поворачивается и зеркало (световой луч смещается на угол 2a 0 ). (рис. 3)


Движение рамки баллистического гальванометра описывается тем же уравнением, что и в случае обычного гальванометра магнитоэлектрической системы:

J
, (1)

где К 1 – коэффициент крутильной упругости; К 2 – коэффициент электромагнитного торможения; В – модуль магнитной индукции; S – площадь рамки; n – нормаль к контуру.

Так как момент инерции j велик, в левой части уравнения (1) можно пренебречь вторым и третьим членами по сравнению с первым:

j . (2)

Количество электричества q , прошедшее через рамку за время t , можно определить, интегрируя уравнение (2):

j
. (3)

Кинетическая энергия рамки гальванометра равна

(4)

которая переходит в потенциальную энергию закручивающейся на угол α нити:

. (5)

Момент инерции может быть определён из формулы для периода Т 0 упругих крутильных колебаний:

(6)

Подставив формулы (4)-(6) в (3) и учитывая, что Е К =Е П , имеем

, (7)

Обозначим . Из выражения (7) видно, что максимальный поворот рамки баллистического гальванометра пропорционален количеству протёкшего через него электричества:

, (8)

где величина β – динамическая постоянная гальванометра. Она определяет количество электричества, при протекании которого через рамку последняя повернётся на угол, равный 1 радиану.

Угол отклонения "зайчика" равен

, (9)

где n – отклонение светового «зайчика» по шкале;

l – расстояние от зеркала до шкалы.

Подставляя значение q из формулы для ёмкости конденсатора в формулу (8) и учитывая выражение (9), получим:

. (10)

Порядок выполнения работы

Упражнение 1: Определение динамической постоянной.

1. Включить в схему эталонный конденсатор С 0 с известной ёмкостью.

2. Переключателем SA замкнуть цепь

3. Переключатель П установить в положение «заряд» и зарядить конденсатор С 0 .

4. Переключатель П установить в положение «разряд» и отметить крайнее деление n 0 , до которого передвинется зайчик во время первого колебания в процессе разрядки конденсатора через гальванометр.

5. Пункты 3-4 повторить 5 раз.

Упражнение 2: Определение ёмкости конденсатора.

1. Включить в схему конденсатор с неизвестной ёмкостью С 1 .

2. П.п. 2-5 упр. 1 повторить 5 раз (п 1 ).

3. Включить в схему конденсатор С 2 .

4. П.п. 2-5 упр. 1 повторить 5 раз (п 2 ).

5. Включить в схему конденсатор С пар , являющийся параллельным соединением С 1 и С 2 (п.п. 2-5 упражнения 1 повторить 5 раз) п пар .

6. Включить в схему конденсатор С посл – (последовательное соединение С 1 и С 2 ) (п.п. 2-5 упражнения 1 повторить 5 раз) п посл .

Таблица измерений

1. Данные электрической схемы:

– длина от зеркала до шкалы l = 180 мм, Δl = 0,5 мм ;

– ёмкость эталонного конденсатора С 0 = 0,047 мкФ ; .

2. Определение отклонения светового «зайчика» n :

№ опыта n 0 , дел Δn 0 , дел n 1 , дел Δn 1 , дел n 2 , дел Δn 2 , дел (n ) пар , дел Δ(n) пар , дел (n) посл , дел Δ(n) посл , дел
Ср. зн.

Обработка результатов измерения .

2. Определить относительную погрешность по формуле

,

ΔU определить из класса точности вольтметра, Δn 0 - сумма приборной и случайной погрешностей.

4. Определить соответствующие относительные погрешности по формуле:

.

5. Найти величины С пар и С посл по следующим формулам:

; .

6. Сравнить экспериментальные и расчетные значения С пар и С посл .

Контрольные вопросы

1.Что такое электроёмкость? В каких единицах она измеряется в системах СИ, СГСЭ?

2. Объясните устройство и принцип действия баллистического гальванометра?

3.Какая электрическая величина измеряется с помощью баллистического гальванометра?

4.Каков физический смысл динамической постоянной β ?

5.Какую величину измерит баллистический гальванометр, если к нему подключить источник постоянного тока?

6.Опишите процесс разрядки конденсатора; приведите формулу для тока разряда конденсатора через некоторое сопротивление.

Задача №1

Конденсаторы соединены так, как это показано на рис.1. Электроемкости конденсаторов: , , , . Определить электроемкость С батареи конденсаторов.

Задача №2

Определить электроемкость С схемы, представленной на рис.2, где , , , , .

С 21
С 1
С 4321
С 321
Рис.1
С 54321
С 1
С 21
С 321
С 4321
С 1
С 21
С 321
С 4321
С 54321
Рис.2
Рис.3

Задача №3

Пять различных конденсаторов соединены согласно схеме, приведенной на рис.3. Определить электроемкость С 4 , при которой электроемкость всего соединения не зависит от величины электроемкости С 5 . Принять , , .

Задача №4

Между пластинами плоского конденсатора, заряженного до разности потенциалов , находятся два слоя диэлектриков: стекла толщиной и эбонита толщиной . Площадь S каждой пластины конденсатора равна 200см 2 . Найти: 1) электро­емкость С конденсатора; 2) смещение D, напряженность Е поля и падение потенциала U в каждом слое.

Задача №5

В плоский конденсатор вдвинули плитку парафина тол­щиной , которая вплотную прилегает к его пластинам. Насколько нужно увеличить расстояние между пластинами, чтобы получить прежнюю емкость?

Задача №6

Конденсатор емкостью периодически заряжается от батареи с ЭДС и разряжается через катушку в форме кольца диаметром , причем плоскость кольца совпадает с плоскостью магнитного меридиана. Катушка имеет витка. Помещенная в центре катушки горизонтальная магнитная стрелка отклоняется на угол . Переключение конденсатора происходит с частотой . Найти из данных это­го опыта горизонтальную составляющую Н г напряжен­ности магнитного поля Земли.

Задача №7

Конденсатор емкостью периодически заряжается от батареи с ЭДС и разряжается через соленоид длиной . Соленоид имеет витков. Среднее значение напряженности магнитного поля внутри соленоида . С какой частотой п проис­ходит переключение конденсатора? Диаметр соленоида считать малым по сравнению с его длиной.

Задача №8

На соленоид длиной и площадью по­перечного сечения надета катушка, состоящая из витков. Катушка соединена с баллистическим галь­ванометром, сопротивление которого . По обмотке соленоида, состоящей из витков, идет ток . Найти баллистическую постоянную С гальванометра, если известно, что при выключении тока в соленоиде гальванометр дает отброс, равный 30 делениям шкалы (­ Баллистической постоянной гальванометра называется вели­чина, численно равная количеству электричества, которое вызывает отброс по шкале на одно деление). Сопротивлением катушки по сравнению с сопротивлением баллистического гальванометра пренебречь.

Задача №9

Для измерения индукции магнитного поля меж­ду полюсами электромагнита помещена катушка, состоя­щая из витков проволоки и соединенная с баллисти­ческим гальванометром. Ось катушки параллельна направлению магнитного поля. Площадь поперечного сече­ния катушки . Сопротивление гальванометра ; его баллистическая постоянная . При быстром выдергивании катушки из магнитного поля гальванометр дает отброс, равный 50 делениям шкалы. Найти индукцию В магнитного поля. Сопротивлением ка­тушки по сравнению с сопротивлением баллистического гальванометра пренебречь.

Задача №10

витков тонкой проволоки, намотанной на прямоугольный каркас длиной и шириной , подвешена на нити в магнитном поле с индукцией . По катушке течет ток . Найти вращающий момент М , действующий на катушку гальванометра, если плоскость катушки: 1) параллельна направлению магнитного поля; 2) составляет угол с направлением магнитного поля.

Задача №11

На расстоянии от длинного прямолинейного вертикального провода на нити длиной и диаметром висит короткая магнитная стрелка, маг­нитный момент которой . Стрелка находится в плоскости, проходящей через провод и нить. На какой угол повернется стрелка, если по проводу пустить ток ? Модуль, сдвига материала нити . Система экранирована от магнитного поля Земли.

Задача №12

Катушка гальванометра, состоящая из витков проволоки, подвешена на нити длиной и диаметром в магнитном поле напряженностью так, что ее плоскость параллельна направ­лению магнитного поля. Длина рамки катушки и ширина . Какой ток I течет по обмотке катушки, если катушка повернулась на угол ? Модуль сдвига материала нити .

Задача №13

Квадратная рамка подвешена на проволоке так, что направление магнитного поля составляет угол с нормалью к плоскости рамки. Сторона рамки . Магнитная индукция поля . Если по paмке пропустить ток , то она поворачивается на, угол . Найти модуль сдвига G материала проволоки. Длина проволоки , радиус нити ­

Задача №14

Зеркальце гальванометра подвешено на проволоке длиной и диаметром . Найти закручивающий момент М , соответствующий отклонению зайчика на величину по шкале, удаленной на расстояние от зеркальца . Модуль сдвига материала проволоки .

Задача №15

При протекании электрического тока через обмотку гальванометра на его рамку с укрепленным на ней зеркальцем действует закручивающий момент , Рамка при этом поворачивается на малый угол . На это закручивание идет работа . На какое расстояние а переместится зайчик от зеркальца по шкале, удаленной на расстояние от гальванометра?

тивлении цепи, при котором производится измерение магнитного потока. Кроме того, так как точность интегрирования импульса зависит от его длительности, из-

менение потока должно происходить достаточно быстро,чтобы продолжительность

импульса была в 20 – 30 раз меньше периода колебаний подвижной части гальва-

Для определения постоянной баллистического гальванометра по магнитному по-

току используют меру магнитного потока в виде двухобмоточной катушки с извест-

ной взаимной индуктивностью.

При изменении тока в первичной обмотке катушки взаимной индуктивности на не-

которую величину DI во вторичной ее обмотке, присоединенной к баллистическому гальванометру (см. рис. 4), произойдет изменение магнитного потока:

где М – коэффициент взаимной индуктивности катушки.

Это изменение потока DF вызовет отброс подвижной части баллистического галь-

ванометра b1m.

Отсюда интерисующая нас постоянная баллистического гальванометра по магнит-

ному потоку будет

Сф=, Вб¤дел.

Баллистический гальванометр в рассмотренной схеме можно заменить вебермет-

В магнитоэлектрическом веберметре используется измерительный механизм маг-

нитоэлектрической системы с противодействующим моментом, близким к нулю, и большим моментом электромагнитного торможения (рамка веберметра замкнута на измерительную катушку, имеющую обычно малое сопротивление).

Уравнение движения подвижной части веберметра можно записать в следующем виде:

Ток i определяется э.д.с., которая возникает в цепи веберметра при изменении по-

тока, сцепляющегося с витками измерительной катушкой, подключенной к зажимам веберметра. Эта э.д.с. определяется выражением (**):

Интегрируя это выражение за время движения подвижной части (от 0 до t) и учи-

тывая, что в момент времени 0 и t подвижная часть находится в состоянии покоя, получаем

P2 Da==DФхwк.

окончательно получим

где Сф – постоянная веберметра, обычно выражаемая в веберах на деление.

Показания веберметра не зависят от времени магнитного потока (как это имело место в баллистическом гальванометре) и в некоторых пределах не зависит от соп-

ротивления внешней цепи (если оно достаточно мало). Так как противодействую-

щий момент прибора равен нулю, то его указатель может занимать произвольное по-

ложение. При определении магнитного потока DFх берут разность показаний прибо-

ра Da=a2-a1, где a2 – конечное показание, a2 – начальное показание.

Для установления указателя на нулевую либо другую удобную отметку шкалы (например, ею иногда может быть средняя отметка) в приборе используют электри-

ческий корректор. Он представляет собой катушку, расположенную в поле постоян-

ного магнита. Если соеденить эту катушку с рамкой веберметра и изменить поток, сцепляющийся с витками катушки (путем поворота катушки или магнита), то рамка веберметра отклонится; регулируя положение катушки или магнита, устанавливают указатель прибора в нужное положение.

Баллистический гальванометр превосходит магнитоэлектрический веберметр по чувствительности и позволяет изменять магнитные величины с большей точностью, но является прибором неградуированным и требует определения постоянной по маг-

нитному потоку Сф в каждом конкретном случае.

Веберметр является переносным прибором, шкала его отградуирована в единицах магнитного потока, он прост и удобен в работе, его показания в довольно широких пределах не зависят от сопротивления цепи и времени изменения потокосцепления.

Основными недостатками его являются относительно низкая чувствительность и малая точность.

В значительной мере лишен этих недостатков фотогальванометрический веберметр (ФЭВ).Упрощенная принципиальная схема ФЭВ, поясняющаяпринцип его действия, приведена на рис.5.

Работает схема следующим образом. Разность э.д.с. ех, возникающей на зажимах измерительной катушки ИК при изменении потокосцепления, и э.д.с. ео.с. обратной связи создает ток i, протекающий через обмотку рамки гальванометра Г с миниатюр

ным зеркальцем на подвижной части. Отклонение подвижной части гальванометра под действием тока i вызывает перемещение светового пятна по последовательно включенным фотосопротивлениям ФС1 и ФС2, в результате чего на входе усилите-

ля У появится сигнал и выходной ток I усилителя скомпенсирует ех через отрицате-

льную обратную связь при помощи катушки взаимной индуктивности М. Считая в приближении ех»ео.с. (предпологаем, что применен гальванометр высокой чувствите-льности к напряжению, и неучитываем э.д.с., индуктированную в рамке гальвано-

метра при ее движении), получим

т.е. по току I можно судить о потоке Фх.

Ток I можно измерить магнитоэлектрическим прибором, а при необходимости за-

писать самопишущим прибором или осциллографом. Теоретические и эксперимен-

тальные исследования компенсационного фотоэлектрического веберметра подтверж-

Задание 1. Определение баллистической постоянной гальванометра.

1. Соберите цепь по схеме (рис. 5).

2. Подсоедините эталонный конденсатор С эт, емкость которого указана на установке.

3. Включите осветитель гальванометра в сеть.

4. Определите начальное положение n 0 риски на шкале. Отсчет величины отклонения светового "зайчика" производите относительно этого деления.

5. Установите по вольтметру PU напряжение по указанию преподавателя.

6. Подключите конденсатор к источнику питания (ручку переключателя S на стенде установите в левое положение) и через 2 - 3 секунды разрядите его на гальванометр (ручку переключателя S установите в правое положение) одновременно отмечая максимальное деление шкалы n, до которого отклонится световой “зайчик”.

7. Повторите аналогичные измерения по пятому пункту не менее трех раз для различных значений напряжений U , заданных преподавателем.

8. По полученным данным, пользуясь формулой (8), определите К б.

9. Результаты измерений и расчетов занесите в таблицу 1.

где ΔU = 0,1 В; Δn = 5 мм; Δ С эт – указана на установке.

11.Ответ представьте в виде: К б = <К б > ± Δ К б.

Задание 2 . Определение емкости конденсаторов

1. Включите в собранную схему конденсатор измеряемой емкости C x в Включите в собранную схему конденсатор измеряемой ёмкости С х вместо С эт.

2. Включите осветитель гальванометра.

3. Установите по вольтметру PU напряжение U, заданное преподавателем.

4. Подключите конденсатор к источнику тока и через 2-3 секунды разрядите его через гальванометр, одновременно отмечая максимальное деление (n ) шкалы, до которого отклонится световой “зайчик “.

5. Повторите аналогичные измерения не менее 3-х раз для различных значений напряжения U (по указанию преподавателя).

6. По полученным данным, пользуясь формулой (9), определите C x (<K б > взять из таблицы 1).

7. Тем же методом определите емкость других конденсаторов (C y или C z по указанию преподавателя).

8. Результаты измерений и расчетов занесите в таблицу 2.

Задание 3. Определить емкости батарей из двух конденсаторов.

1. Соедините конденсаторы C x и C y (или C x и C z) последовательно в батарею (рис.1).

2. Методом, приведенным в задании 2, определите емкости C xy (или C xz) батареи при последовательном соединении.

3. Соедините те же конденсаторы параллельно в батарею.

4. Определите емкость C xy (или C xz) батареи при параллельном соединении.

5. Результаты измерений и расчетов занесите в таблицу 2.

8. Результаты расчетов представьте в виде:

C x = <C x > ± Δ C x и т. д.

9. Сравните результаты опытов при последовательном и параллельном соединении конденсаторов с результатами вычисления емкости батарей по теоретическим формулам (3) и (4).

10. Оформите вывод по анализу опытных и расчетных данных, занесенных в таблицы. В выводе отразить следующие положения:

а) зависит ли баллистическая постоянная K б от напряжения на эталонном конденсаторе и его емкости C эт?

б) как увеличение напряжения на конденсаторе влияет на отброс светового луча по шкале и почему?

в) зависят ли емкости C x , C y , C xy (послед.), C xy (паралл.) от напряжений на них?

г) как согласуются значения экспериментально полученных емкостей батарей конденсаторов при последовательном и параллельном соединениях с результатами вычисления по формулам?

Контрольные вопросы

1. Каков принцип действия баллистического гальванометра?

2. Каков физический смысл баллистической постоянной?

3. Что называется емкостью уединенного проводника? Конденсатора?

4. Что называется взаимной емкостью двух проводников?

5. Чем отличается емкость конденсатора от емкости уединенного проводника?

6. Выведите формулу емкости батареи конденсаторов при последовательном и параллельном соединениях.

7. В каких случаях следует применять тот или иной способ соединения конденсаторов в батарею?

8. Объясните метод определения емкости с помощью баллистического гальванометра.

Лабораторная работа N 17

ЛАБОРАТОРНАЯ РАБОТА № 2

ОПРЕДЕЛЕНИЕ ЕМКОСТИ КОНДЕНСАТОРА БАЛЛИСТИЧЕСКИМ ГАЛЬВАНОМЕТРОМ

1. Введение

Цель работы – ознакомление с баллистическим методом определения емкости конденсатора. Работа состоит из двух частей. В первой части находят величину баллистической постоянной гальванометра, во второй – определяют емкости двух конденсаторов и емкости этих конденсаторов, соединенных. параллельно и последовательно.

Емкость конденсатора равна отношению заряда q на конденсаторе к разности потенциалов между его обкладками

https://pandia.ru/text/78/409/images/image003_10.png" width="81" height="23 src=">. (2)

При последовательном соединении

Заряд конденсатора измеряют с помощью баллистического гальванометра. Баллистический метод является одним из приемов не только электрических, но и магнитных измерений. Баллистический гальванометр относится к приборам магнито-электрической системы, схематичное устройство которых показано на рис. 1. Между полюсами постоянного магнита NS для создания -радиального магнитного поля помещен стальной цилиндр В . Цилиндр закреплен неподвижно. В зазоре между полюсами магнита и цилиндром может свободно вращаться рамка К с обмоткой из тонкой проволоки, подвешенная на металлической или кварцевой нити М . Для отсчета углов поворота рамки служит зеркальце А , на которое падает световой луч от осветительного устройства. Баллистический гальванометр служит для измерения заряда, длительность t протекания которого по цепи мала по сравнению с периодом Т собственных колебаний рамки. Баллистический гальванометр отличается от обычных зеркальных гальванометров увеличенным значением момента инерции I его подвижной системы. Если через гальванометр пропустить кратковременный импульс тока (t<<T ), то на рамку в каждый момент времени действует вращающий момент, обусловленный взаимодействием тока i с магнитным полем: https://pandia.ru/text/78/409/images/image007_6.png" width="37" height="45">. Так как ток к этому моменту прекратился, то рамка начинает поворачиваться по инерции с начальной скоростью w0 и закручивает нить. В момент остановки рамки вся кинетическая энергия переходит в потенциальную энергию закрученной нити , где D - постоянная кручения нити; j – максимальный угол отклонения рамки:

Угловую скорость w0, ..png" width="65" height="41 src=">.

Произведем интегрирование:

так как https://pandia.ru/text/78/409/images/image015_4.png" width="61" height="24 src=">, (5)

где q – заряд, прошедший через рамку за время t. Решая совместно уравнения (4) и (5), будем иметь . На опыте измеряют отклонение светового «зайчика» (отброс) не в углах, а в делениях шкалы n . Поскольку n и j пропорциональны друг другу, то окончательно можем записать

q = Bn , (6)

где В – коэффициент пропорциональности, который называется баллистической постоянной гальванометра. Баллистическая постоянная численно равна величине заряда, вызывающего отклонение «зайчика» на одно деление шкалы. Любой гальванометр может служить в качестве баллистического, если выполнено условие t << T . Итак, зная баллистическую постоянную гальванометра В , отброс n при разряде конденсатора и показания вольтметра U , в соответствии с формулами (1) и (6) находят емкость

Зарядные устройства" href="/text/category/zaryadnie_ustrojstva/" rel="bookmark">блок питания , Г – баллистический гальванометр, В – вольтметр, К – двойной переключатель. В положении I переключателя К конденсатор С заряжается; при переводе переключателя в положение II конденсатор разряжается через гальванометр. В этот момент измеряют максимальное отклонение «зайчика» n по шкале.

В первой части работы для определения баллистической постоянной в цепь (рис. 2) включают конденсатор известной емкости – эталон С э. Заряжая эталонный конденсатор до определенной разности потенциалов U , а затем разряжая его на гальванометр, измеряют отклонение «зайчика» n . Так как заряд на конденсаторе равен q = C эU , то по формуле (6) можно вычислить баллистическую постоянную

0 " style="border-collapse:collapse;border:none">

n, дел

q , мкКл

В , мкКл/дел

Вср , мкКл/дел

1. Вычисляют В для каждого U пo формуле (8), находят среднее значение В . Строят график зависимости q от n и убеждаются в том, что эта зависимость линейна.

2. Выводят формулу погрешности величины В по правилам расчета погрешности косвенных измерений. Вычисляют DB /В для: наименьшего значения U по данным табл. 1.

Определение емкостей неизвестных конденсаторов и их соединений

Таблица 2

n, дел

С , мкФ

Сср , мкФ

Конденсатор С 1

Конденсатор С 2

Параллельн. соед. С"

Последоват. соед. С""

3. Вычисляют емкости конденсаторов С 1, С 2, С" и С" по формуле (7).

4. Находят по формулам (2) и (3) теоретические значения емкостей конденсаторов С" теор и С" теор и сравнивают с опытными С" и С" .

5. Выводят формулу погрешности DС /С для емкости, найденной экспериментально (формула 7). Рассчитывают DС 1/С 1, DС 2/С 2, DС" /С" , DС" /С" для одного из значений U (DВ /В берут из п. 2). Определяют абсолютные погрешности и записывают окончательный результат для каждой емкости.

6. Находят разность значений емкости при параллельном (или последовательном) соединении, полученных экспериментально и теоретически. Сравнивают (С" С" теор) с погрешностью этой разности D( С" С" теор) и убеждаются в том, что С" С" теор £. D( С" С" теор). Значения С 1 С 2 и С" берут из табл. 2 при одной разности потенциалов U .

7. Дополнительное задание. Предлагается продумать и проверить экспериментально метод определения емкости конденсатора с использованием эталонного конденсатора, но без предварительного измерения баллистической постоянной.

ЛИТЕРАТУРА

1. , Курс физики. – М.: Высш. школа, 1999, § 16.2, 16.3.