Какие бывают носители информации по информатике. Внешние носители информации. Классификация носителей информации

(электромагнитное излучение) и т. д. и т. п.

Носителем информации может быть любой объект, с которого возможно (но не обязательно) чтение имеющейся (записанной) информации.

Зачастую сам носитель информации помещается в защитную оболочку, повышающую его сохранность и, соответственно, надёжность сохранения И (к примеру: бумажные листы - в обложку, микросхему памяти - в пластик (смарт-карта), магнитную ленту - в корпус и т. д.).

Носители информации в быту, науке (библиотеки), технике (скажем, для нужд связи), общественной жизни (СМИ) применяются для:

  • записи
  • хранения
  • чтения
  • передачи (распространения)
  • создания произведений компьютерного искусства

В общем случае границы между этими разновидностями носителей довольно расплывчаты и могут варьироваться в зависимости от ситуации и внешних условий.

Основные материалы

  • бумага (перфолента, перфокарта, листы);
  • пластик (штрих-код, оптические диски);
  • магнитные материалы (магнитные ленты и диски);

Также ранее имели распространение: обожжённая глина , камень , кость , древесина , пергамент , берёста , папирус , воск , ткань и др.

Для внесения изменений в структуру материала носителя используются различные виды воздействия:

  • термическое (выжигание);

Электронные носители

К электронным носителям относят носители для однократной или многократной записи (обычно цифровой ) электрическим способом: CD-ROM , DVD -ROM, полупроводниковые (флеш-память и т. п.), дискеты .

Имеют значительное преимущество перед бумажными (листы, газеты , журналы) по объёму и удельной стоимости. Для хранения и предоставления оперативной (не долговременного хранения) информации - имеют подавляющее преимущество, также имеются значительные возможности по предоставлению И в удобном потребителю виде (форматирование , сортировка). Недостаток - малый размер экрана (или значительный вес) и хрупкость устройств считывания, зависимость от .

В настоящее время электронные носители активно вытесняют бумажные, во всех отраслях жизни, что приводит к значительному сбережению древесины. Минусом их является то, что для считывания И для каждого типа и формата носителя необходимо соответствующее ему устройство считывания.

Устройства хранения

Недостатком данного носителя являлось то, что со временем он темнел и ломался. Дополнительным недостатком стало то, что египтяне ввели запрет на вывоз папируса за границу.

Азия

Недостатки носителей информации (глина, папирус, воск) стимулировали поиск новых носителей. На этот раз сработал принцип «всё новое - хорошо забытое старое»: в Персии для письма издревле использовался дефтер - высушенные шкуры животных (в турецком и родственных ему языках слово «дефтер» и сейчас означает тетрадь), о чём вспомнили греки.

Европа

На территории Европы высокоразвитые народы (греки и римляне) нащупывали свои способы записи. Сменяются множество различных носителей: свинцовые листы, костяные пластинки и т. д.

Начиная с VII века до н. э. запись производится острой палочкой - стилусом (как и на глине) на деревянных дощечках, покрытых слоем податливого воска (т. н. восковые таблички). Стирание информации (ещё одно преимущество данного носителя) производилось обратным тупым концом стилуса. Скрепляли такие дощечки по четыре штуки (отсюда и слово «тетрадь», так как др.-греч. τετράς в переводе с греческого - четыре).

Однако на воске надписи недолговечны, и проблема сохранения записей была весьма актуальной.

Америка

В XI-XVI веках коренные народы Южной Америки придумали узелковое письмо «кипу » (quipu в переводе с языка индейцев кечуа - узел) . Из верёвок (к ним привязывали ряды шнурков) составлялись «сообщения». Тип, число узелков, цвета и количества нитей, их расположения и переплетения представлял собой «кодировку» («алфавит») кипу.
Нанизанными на шнуры небольшими раковинами кодировали свои сообщения индейские племена Северной Америки. Этот вид письменности назывался «вампум» - от индейского слова wampam (сокращённое от wampumpeag) - белые бусы . Переплетения шнуров образовывали полоску, которую обычно носили как пояс. Комбинацией цветных ракушек и рисунков на них могли составляться целые послания.

Древняя Русь

Как носитель использовалась берёста (верхний слой берёзовой коры). Буквы на ней прорезывали писалом (костяная или металлическая палочка).

К концу XVI века на Руси появляется своя бумага (в русский язык слово «бумага» пришло скорее всего из итальянского, bambagia - хлопок).

Средневековье

В античном мире и Средневековье восковые таблички использовались в качестве записных книжек, для хозяйственных пометок и для обучения детей письму.

Новое время

Современность

Сейчас люди используют компьютеры для обработки и хранения информации.

См. также

  • Носитель имени
  • Носитель фамилии
  • Нуклеиновые кислоты (ДНК, РНК)

Ссылки

Примечания

Что было известно первому человеку? Как убить мамонта, бизона или поймать кабана. В эпоху палеолита хватало стен в пещере, чтобы зафиксировать все изученное. Пещерная база данных целиком бы уместилась на скромную флешку размером мегабайт. За 200000 лет своего существования мы узнали о геноме африканской лягушки, нейронных сетях и больше не рисуем на скалах. Сейчас у нас есть диски, облачные хранилища. А также другие виды носителей информации, способные сохранить на одном чипсете всю библиотеку МГУ.

Что такое носитель информации

Носитель информации - это физический объект, свойства и характеристики которого используются для записи и хранения данных. Примерами носителей информации являются пленки, компактные оптические диски, карты, магнитные диски, бумага и ДНК. Носители информации различаются по принципу осуществления записи:

  • печатная или химическая с нанесением краски: книги, журналы, газеты;
  • магнитная: HDD, дискеты;
  • оптическая: CD, Blu-ray;
  • электронная: флешки, твердотельные накопители.

Классифицируются хранилища данных по форме сигнала:

  • аналоговые, использующие для записи непрерывный сигнал: аудио компакт-кассеты и бобины для магнитофонов;
  • цифровые - с дискретным сигналом в виде последовательности чисел: дискеты, флешки.

Первые носители информации

История записи и хранения данных началась 40 тысяч лет назад, когда Homo sapiens пришла идея делать эскизы на стенах своих жилищ. Первое наскальное творчество находится в пещере Шове на юге современной Франции. Галерея содержит 435 рисунков, изображающих львов, носорогов и других представителей фауны позднего палеолита.

На смену Ориньякской культуре в бронзовом веке возник принципиально новый вид носителей информации - туппу́м. Девайс представлял собой пластину из глины и напоминал современный планшет. На поверхность с помощью тростниковой палочки - стилуса - наносились записи. Чтобы труд не размыло дождем, туппумы обжигались. Все таблички с древней документацией тщательно сортировались и хранились в специальных деревянных ящиках.

В Британском музее есть туппум, содержащий информацию о финансовой сделке, произошедшей в Месопотамии во времена правления царя Ассурбанипала. Офицер из свиты принца подтверждал продажу рабыни Арбелы. Табличка содержит его именную печать и записи о ходе операции.

Кипу и папирус

С III тысячелетия до нашей эры в Египте начинают использовать папирус. Запись данных происходит на листы, изготовленные из стеблей растения papyrus. Портативный и легкий вид носителей информации быстро вытеснил свою глиняную предшественницу. На папирусе пишут не только египтяне, но и греки, римляне, византийцы. В Европе материал использовали до XII века. Последний документ, написанный на папирусе, - папский декрет 1057 года.

Одновременно с древними египтянами, на противоположном конце планеты инки изобретают кипу, или «говорящие узелки». Информация фиксировалась с помощью завязывания узлов на прядильных нитях. Кипу хранили данные о налоговых сборах, численности населения. Предположительно использовалась нечисловая информация, но ученым ее только предстоит разгадать.

Бумага и перфокарты

С XII до середины XX века основным хранилищем данных была бумага. Ее использовали для создания печатных и рукописных изданий, книг, средств масс-медиа. В 1808 году из картона начали делать перфокарты - первые цифровые носители информации. Представляли собой листы картона с проделанными в определенной последовательности отверстиями. В отличие от книг и газет, перфокарты считывались машинами, а не людьми.

Изобретение принадлежит американскому инженеру с немецкими корнями Герману Холлериту. Впервые автор применил свое детище для составления статистики смертности и рождаемости в Нью-Йоркском Совете здравоохранения. После пробных попыток, перфокарты использовали для переписи населения США в 1890 году.

Но сама идея проделывать дырки в бумаге, чтобы записывать информацию, была далеко не новой. Еще в 1800 году перфокарты ввел в обиход француз Джозеф-Мари Жаккард для управления ткацким станком. Поэтому технологический прорыв заключался в создании Холлеритом не перфокарт, а табуляционной машины. Это был первый шаг на пути к автоматическому считыванию и вычислению информации. Компания TMC Германа Холлерита по производству табуляционных машин в 1924 году была переименована в IBM.

OMR-карты

Представляют собой листы плотной бумаги с информацией, записанной человеком в виде оптических меток. Сканер распознает метки и обрабатывает данные. OMR-карты используют для составления опросников, тестов с опциональным выбором, бюллетеней и форм, которые необходимо заполнять вручную.

Технология основана на принципе составления перфокарт. Но машина считывает не сквозные отверстия, а выпуклости, или оптические метки. Погрешность исчислений составляет менее 1 %, поэтому OMR-технологию продолжают использовать государственные учреждения, экзаменационные органы, лотереи и букмекерские конторы.

Перфолента

Цифровой носитель информации в виде длинной бумажной полоски с отверстиями. Перфорированные ленты были впервые использованы Базиле Бушоном в 1725 году для управления ткацким станком и механизирования отбора нитей. Но ленты были очень хрупкими, легко рвались и при этом дорого стоили. Поэтому их заменили на перфокарты.

С конца XIX века перфолента получила широкое применение в телеграфии, для ввода данных в компьютеры 1950-1960 годов и в качестве носителей для мини-компьютеров и станков с ЧПУ. Сейчас бобины с намотанной перфолентой стали анахронизмом и канули в Лету. На смену бумажным носителям пришли более мощные и объемные хранилища данных.

Магнитная лента

Дебют магнитной ленты в качестве компьютерного носителя информации состоялся в 1952 году для машины UNIVAC I. Но сама технология появилась гораздо раньше. В 1894 году датский инженер Вольдемар Поульсен обнаружил принцип магнитной записи, работая механиком в Копенгагенской телеграфной компании. В 1898 году ученый воплотил идею в аппарате под названием "телеграфон".

Стальная проволока проходила между двумя полюсами электромагнита. Запись информации на носитель осуществлялась посредством неравномерного намагничивания колебаний электрического сигнала. Вольдемар Поульсен запатентовал свое изобретение. На Всемирной выставке 1900 года в Париже он имел честь записать голос императора Франца-Иосифа на свой девайс. Экспонат с первой магнитной звукозаписью по сей день хранится в Датском музее науки и техники.

Когда патент Поульсена истек, Германия занялась улучшением магнитной записи. В 1930 году стальная проволока была заменена гибкой лентой. Решение использовать магнитные полосы принадлежит австрийско-немецкому разработчику Фрицу Пфлеймеру. Инженер придумал покрывать тонкую бумагу порошком оксида железа и осуществлять запись посредством намагничивания. С использованием магнитной пленки были созданы компакт-кассеты, видеокассеты и современные носители информации для персональных компьютеров.

HDD-диски

Винчестер, HDD или жесткий диск - это аппаратное устройство с энергонезависимой памятью, что означает полное сохранение информации, даже при отключенном питании. Является вторичным запоминающим устройством, состоящим из одной или нескольких пластин, на которые записываются данные с использованием магнитной головки. HDD находятся внутри системного блока в отсеке дисководов. Подключаются к материнской плате с помощью кабеля ATA, SCSI или SATA и к блоку питания.

Первый жесткий диск был разработан американской компанией IBM в 1956 году. Технологию применили в качестве нового вида носителей информации для коммерческого компьютера IBM 350 RAMAC. Аббревиатура расшифровывается как «метод случайного доступа к учету и контролю».

Чтобы вместить девайс у себя дома, потребовалась бы целая комната. Внутри диска было 50 алюминиевых пластин по 61 см в диаметре и 2,5 см шириной. Размер системы хранения данных приравнивался к двум холодильникам. Его вес составлял 900 кг. Емкость RAMAC была всего лишь 5МБ. Смешная цифра на сегодняшний день. Но 60 лет назад это расценивалось как технология завтрашнего дня. После анонсирования разработки, ежедневная газета города Сан Хосе выпустила репортаж под названием «Машина с суперпамятью!».

Размеры и возможности современных HDD

Жесткий диск - компьютерный носитель информации. Используется для хранения данных, включая изображения, музыку, видео, текстовые документы и любые созданные или загруженные материалы. Кроме того, содержат файлы для операционной системы и программного обеспечения.

Первые винчестеры вмещали до нескольких десятков Мбайт. Постоянно развивающаяся технология позволяет современным HDD хранить терабайты информации. Это около 400 фильмов со средним расширением, 80 000 песен в mp3-формате или 70 компьютерных ролевых игр, аналогичных «Скайрим», на одном устройстве.

Дискета

Floppy, или гибкий магнитный диск, - носитель информации, созданный IBM в 1967 году как альтернатива HDD. Дискеты стоили дешевле винчестеров и предназначались для хранения электронных данных. На ранних компьютерах не было CD-ROM или USB. Гибкие диски были единственным способом установки новой программы или резервного копирования.

Вместительность каждой 3,5-дюймовой дискеты была до 1,44 Мбайт, когда одна программа «весила» не менее полутора мегабайт. Поэтому версия Windows 95 появилась сразу на 13 дискетах DMF. Floppy disk на 2,88 Мбайт появился только в 1987 году. Просуществовал этот электронный носитель информации до 2011 года. В современной комплектации компьютеров отсутствуют флоппи-дисководы.

Оптические носители

С появлением квантового генератора началась популяризация оптических запоминающих устройств. Запись осуществляется лазером, а считываются данные за счет оптического излучения. Примеры носителей информации:

  • Blu-ray диски;
  • CD-ROM диски;
  • DVD-R, DVD+R, DVD-RW и DVD+RW.

Устройство представляет собой диск, покрытый слоем поликарбоната. На поверхности находятся микроуглубления, которые считываются лазером при сканировании. Первый коммерческий лазерный диск появился на рынке в 1978 году, а в 1982 году японская компания SONY и Philips выпустили в продажу компакт-диски. Их диаметр составлял 12 см, а разрешение было увеличено до 16 бит.

Электронные носители информации формата CD использовались исключительно для воспроизведения звуковой записи. Но на то время это была передовая технология, за которую в 2009 году Royal Philips Electronics получила награду IEEE. А в январе 2015 года CD был награжден как ценнейшая инновация.

В 1995 году появились цифровые универсальные диски или DVD, ставшие оптическими носителями нового поколения. Для их создания использовалась технология другого типа. Вместо красного лазер DVD использует более короткий инфракрасный свет, что увеличивает объем носителя информации. Двухслойные DVD-диски способны хранить до 8,5 Гбайта данных.

Flash-память

Флеш-память - это интегральная микросхема, которая не требует постоянной мощности для сохранения данных. Другими словами, это энергонезависимая полупроводниковая компьютерная память. Запоминающие устройства с флеш-памятью постепенно завоевывают рынок, вытесняя магнитные носители.

Преимущества Flash-технологии:

  • компактность и мобильность;
  • большой объем;
  • высокая скорость работы;
  • низкое энергопотребление.

К запоминающим устройствам Flash-типа относят:

  • USB-флешки. Это самый простой и дешевый носитель информации. Используется для многократной записи, хранения и передачи данных. Размеры варьируются от 2 Гбайт до 1 Тбайта. Содержит микросхему памяти в пластиковом или алюминиевом корпусе с USB-разъёмом.
  • Карты памяти. Разработаны для хранения данных на телефонах, планшетах, цифровых фотоаппаратах и других электронных девайсах. Отличаются размером, совместимостью и объемом.
  • SSD. Твердотельный накопитель с энергонезависимой памятью. Это альтернатива стандартному жесткому диску. Но в отличие от винчестеров у SSD нет движущийся магнитной головки. За счет этого они обеспечивают быстрый доступ к данным, не издают скрипов, как HDD. Из недостатков - высокая цена.

Облачные хранилища

Облачные онлайн-хранилища - это современные носители информации, представляющие собой сеть из мощных серверов. Вся информация хранится удаленно. Каждый пользователь может получать к данным доступ в любое время и из любой точки мира. Недостаток в полной зависимости от интернета. Если у вас нет подключения к Сети или Wi-Fi, доступ к данным закрыт.

Облачные хранилища гораздо дешевле своих физических аналогов и обладают большим объемом. Технология активно используется в корпоративной и образовательной среде, разработке и проектировании веб-приложений компьютерного софта. На облаке можно хранить любые файлы, программы, резервные копии, использовать их как среду разработки.

Из всех перечисленных видов носителей информации самыми перспективными являются облачные хранилища. Также все больше пользователей ПК переходят с магнитных жестких дисков на твердотельные накопители и носители с Flash-памятью. Развитие голографических технологий и искусственного интеллекта обещает появление принципиально новых девайсов, которые оставят флешки, SDD и диски далеко позади.

Носитель информации -- предмет, используемый человеком для длительного хранения информации.

Оптические диски

Носители информации в форме диска, информация с которых считывается при помощи лазера. Информация хранится в виде питов(pit - яма) и лендов(land - земля) на слое поликарбоната. Если свет сфокусировался между питами (на ленде), то фотодиод регистрирует максимальный сигнал. В случае, если свет попадает на пит, фотодиод регистрирует ме́ньшую интенсивность света.

Первое поколение

Компакт-диск(CD) - разработан компаниями Sony и Phillips в 1979 году, используется преимущественно для записи аудио-файлов. Имеют объём от 650 Мб до 900 Мб. Разделяются на CD-R(Compact Disc Recordable) для однократной записи и на CD-RW(Compact Disc ReWritable)для многократной записи. Весьма распространены до сих пор.

Второе поколение

Цифровой многоцелевой диск(DVD) - был анонсирован в 1995 году. Благодаря более плотной структуре рабочей поверхности и возможности нанесения её на обе стороны диска, он значительно превосходит компакт-диски в объёме от (1,46 Гб до 17.08 Гб). Также делятся на DVD-R и DVD-RW, DVD+R и DVD+RW, которые более совершенны, чем предыдущие два, и DVD-RAM, допускающий значительно большее количество перезаписей, чем DVD+RW. Наиболее распространённые оптические диски на данный момент.

Цифровой Многослойный Диск(DMD) - оптический диск, разработанный компанией D Data Inc. Диск основан на трехмерной оптической технологии хранения данных, то есть лазер считывает с нескольких рабочих поверхностей одновременно. DMD могут хранить от 22 до 32 Гб двоичной информации. DMD покрыты запатентованными химическими составами, которые реагируют, когда красный лазер освещает особый слой. В этот момент химическая реакция производит сигнал, который в последующем будет считан с диска. Благодаря этому диски могут потенциально вмещать до 100 Гб данных.

Флуоресцентный многоуровневый диск(FMD) - формат оптического носителя, разработанный компанией «Constellation 3D», использующий флуоресценцию вместо отражения для хранения данных, что позволяет работать, соответствуя принципам объёмной оптической памяти и иметь до 100 слоёв. Они позволяют вместить объём до 1 Тб при размерах обычного компакт-диска. Питы на диске заполнены флуоресцентным материалом. Когда когерентный свет из лазера фокусируется на них, они вспыхивают, излучая некогерентные световые волны разных длин. Пока диск чист, свет способен проходить через множество слоёв беспрепятственно. Чистые диски имеют возможность отфильтровывать свет лазера (базируясь на длинах волн и когерентности), достигая при этом более высокого коэффициента отношения сигнал/шум, чем диски, основанные на отражении. Это позволяет иметь множество слоёв.

Третье поколение

Blu-ray Disc(BD) - формат оптического диска, используемый для записи с повышенной плотностью хранения цифровых данных. Современный вариант этого диска был представлен в 2006 году. Своё название(blue ray - синий луч) получил по технологии записи и чтения с помощью коротковолнового синего лазера, что и позволило уплотнить данные на диске. Может вмещать от 8 до 50 Гб.

DVD высокой ёмкости(HD DVD) - аналог предыдущего формата дисков с ёмкостью до 30 Гб.Не поддерживаются с 2008 года, чтобы избежать войны форматов.

Многоцелевые многоуровневые диски высокой ёмкости(HDVMD) - формат цифровых носителей на оптических дисках, предназначенный для хранения видео высокой чёткости и другого высококачественных мультимедийных данных. На одном слое HD VMD-диска помещается до 5 ГБ данных, но за счёт того, что диски являются многослойными (до 20 слоёв) их ёмкость достигает 100 ГБ. В отличие от предыдущих двух форматов использует красный лазер, что позволяет читать их дисководам, поддерживающих CD и DVD диски.

Четвёртое поколение

Голографический многоцелевой диск(HVD) - разрабатываемый перспективный формат оптических дисков, который предполагает значительно увеличить объём хранимых на диске данных по сравнению с Blu-Ray и HD DVD. Он использует технологию, известную как голография, которая использует два лазера: один - красный, а второй - зелёный, сведённые в один параллельный луч. Зелёный лазер читает данные, закодированные в виде сетки с голографического слоя близкого к поверхности диска, в то время как красный лазер используется для чтения вспомогательных сигналов с обычного компакт-дискового слоя в глубине диска. Предполагаемая ёмкость - до 4 Тб.

Жёсткие диски

Накопитель на жёстких магнитных дисках - запоминающее устройство, основной накопитель в большинстве компьютеров. Принцип действия основан на изменении векторов намагниченности доменов(небольшого участка диска)магнитного диска под действием переменного тока в катушке на конце считывающей головки. Распространены благодаря очень высокой ёмкости и скорости работы. Многие жёсткие диски издают шум. Бытовые диски обычно хранят информацию в объёме до 1 Тб. Бывают также и внешние жёсткие диски, присоединяемые к компьютеру через USB-порт, они не обеспечивают такой же скорости, как и внутренние, но предоставляют ту же большую ёмкость. Помимо это разрабатываются гибридные жёсткие диски с элементами флэш-памяти.

Носители, использующие технологию флеш-памяти

Флеш-память - разновидность полупроводниковой технологии электрически перепрограммируемой памяти. Принцип работы полупроводниковой технологии флеш-памяти основан на изменении и регистрации электрического заряда в изолированной области («кармане») полупроводниковой структуры. Достоинствами таких носителей являются компактность, дешевизна, механическая прочность, большой объём, скорость работы и низкое энергопотребление. Серьёзным недостатком данной технологии является ограниченный срок эксплуатации носителей.

USB-флэш-накопитель - запоминающее устройство, изобретённое в 2000 году. Очень популярное, благодаря удобству пользования и универсальности. Может хранить информацию без электричества до 10 лет.

Карта памяти - запоминающее устройство разных разновидностей, используемые под определённые устройство, таких как мобильные телефоны, КПК, авторегистраторы. Наиболее распространён стандарт microSD.

ВНИМАНИЕ!
Здесь приводится очень сокращённый текст реферата. Полную версию реферат по информатике можно скачать бесплатно по указанной выше ссылке.

Виды носителей информации

Носитель информации – физическая среда, непосредственно хранящая информацию. Основным носителем информации для человека является его собственная биологическая память (мозг человека). Собственную память человека можно назвать оперативной памятью. Здесь слово “оперативный” является синонимом слова “быстрый”. Заученные знания воспроизводятся человеком мгновенно. Собственную память мы еще можем назвать внутренней памятью, поскольку ее носитель – мозг – находится внутри нас.

Носитель информации - строго определённая часть конкретной информационной системы, служащая для промежуточного хранения или передачи информации.

Основа современных информационных технологий – это ЭВМ. Когда речь идет об ЭВМ, то можно говорить о носителях информации, как о внешних запоминающих устройствах (внешней памяти). Эти носители информации можно классифицировать по различным признакам, например, по типу исполнения, материалу, из которого изготовлен носитель и т.п. Один из вариантов классификация носителей информации представлен на рис. 1.1.

Список носителей информации на рис. 1.1 не является исчерпывающим. Некоторые носители информации мы рассмотрим более подробно в следующих разделах.

Ленточные носители информации

Магнитная лента - носитель магнитной записи, представляющий собой тонкую гибкую ленту, состоящую из основы и магнитного рабочего слоя. Рабочие свойства магнитной ленты характеризуются её чувствительностью при записи и искажениями сигнала в процессе записи и воспроизведения. Наиболее широко применяется многослойная магнитная лента с рабочим слоем из игольчатых частиц магнитно-твёрдых порошков гамма-окиси железа (у-Fе2О3), двуокиси хрома (СrО2) и гамма-окиси железа, модифицированной кобальтом, ориентированных обычно в направлении намагничивания при записи.

Дисковые носители информации

Дисковые носители информации относятся к машинным носителям с прямым доступом. Понятие прямой доступ означает, что ПК может «обратиться» к дорожке, на которой начинается участок с искомой информацией или куда нужно записать новую информацию .

Накопители на дисках наиболее разнообразны:

  • Накопители на гибких магнитных дисках (НГМД), они же флоппи-диски, они же дискеты
  • Накопители на жестких магнитных дисках (НЖМД), они же винчестеры (в народе просто «винты»)
  • Накопители на оптических компакт-дисках:
    • CD-ROM (Compact Disk ROM)
    • DVD-ROM
Имеются и другие разновидности дисковых носителей информации, например, магнитооптические диски, но ввиду их малой распространенности мы их рассматривать не будем.

Накопители на гибких магнитных дисках

Некоторое время назад дискеты были самым популярным средством передачи информации с компьютера на компьютер, так как интернет в те времена был большой редкостью, компьютерные сети тоже, а устройства для чтения-записи компакт дисков стоили очень дорого. Дискеты и сейчас используются, но уже достаточно редко. В основном для хранения различных ключей (например, при работе с системой клиент-банк) и для передачи различной отчетной информации государственным надзорным службам.

Дискета - портативный магнитный носитель информации, используемый для многократной записи и хранения данных сравнительно небольшого объема. Этот вид носителя был особенно распространён в 1970-х - начале 2000-х годов. Вместо термина «дискета» иногда используется аббревиатура ГМД - «гибкий магнитный диск» (соответственно, устройство для работы с дискетами называется НГМД - «накопитель на гибких магнитных дисках», жаргонный вариант - флоповод, флопик, флопарь от английского floppy-disk или вообще "печенюшка"). Обычно дискета представляет собой гибкую пластиковую пластинку, покрытую ферромагнитным слоем, отсюда английское название «floppy disk» («гибкий диск»). Эта пластинка помещается в пластмассовый корпус, защищающий магнитный слой от физических повреждений. Оболочка бывает гибкой или прочной. Запись и считывание дискет осуществляется с помощью специального устройства - дисковод (флоппи-дисковод). Дискета обычно имеет функцию защиты от записи, посредством которой можно предоставить доступ к данным только в режиме чтения. Внешний вид 3,5” дискеты представлен на рис. 1.2.

Накопители на жестких магнитных дисках

В качестве накопителей на жестких магнитных дисках широкое распространение в ПК получили накопители типа «винчестер».

Термин винчестер возник из жаргонного названия первой модели жесткого диска емкостью 16 КВ (IBM, 1973 г.), имевшего 30 дорожек по 30 секторов, что случайно совпало с калибром 30/30 известного охотничьего ружья «Винчестер».

Накопители на оптических дисках

Компакт-диск («CD», «Shape CD», «CD-ROM», «КД ПЗУ») - оптический носитель информации в виде диска с отверстием в центре, информация с которого считывается с помощью лазера. Изначально компакт-диск был создан для цифрового хранения аудио (т. н. Audio-CD), однако в настоящее время широко используется как устройство хранения данных широкого назначения (т. н. CD-ROM). Аудио-компакт-диски по формату отличаются от компакт-дисков с данными, и CD-плееры обычно могут воспроизводить только их (на компьютере, конечно, можно прочитать оба вида дисков). Встречаются диски, содержащие как аудиоинформацию, так и данные - их можно и послушать на CD-плеере, и прочитать на компьютере.

Оптические диски имеют обычно поликарбонатную или стеклянную термообработанную основу. Рабочий слой оптических дисков изготавливают в виде тончайших плёнок легкоплавких металлов (теллур) или сплавов (теллур-селен, теллур-углерод, теллур-селен-свинец и др.), органических красителей. Информационная поверхность оптических дисков покрыта миллиметровым слоем прочного прозрачного пластика (поликарбоната). В процессе записи и воспроизведения на оптических дисках роль преобразователя сигналов выполняет лазерный луч, сфокусированный на рабочем слое диска в пятно диаметром около 1 мкм. При вращении диска лазерный луч следует вдоль дорожки диска, ширина которой также близка к 1 мкм. Возможность фокусировки луча в пятно малого размера позволяет формировать на диске метки площадью 1-3 мкм. В качестве источника света используются лазеры (аргоновые, гелий-кадмиевые и др.). В результате плотность записи оказывается на несколько порядков выше предела, обеспечиваемого магнитным способом записи. Информационная ёмкость оптического диска достигает 1 Гбайт (при диаметре диска 130 мм) и 2-4 Гбайт (при диаметре 300 мм).

Широкое применение в качестве носителя информации получили также магнитооптические компакт-диски типа RW (Re Writeble). На них запись информации осуществляется магнитной головкой с одновременным использованием лазерного луча. Лазерный луч нагревает точку на диске, а электромагнит изменяет магнитную ориентацию этой точки. Считывание же производится лазерным лучом меньшей мощности.

Во второй половине 1990-х годов появились новые, весьма перспективные носители документированной информации - цифровые универсальные видеодиски DVD (Digital Versatile Disk) типа DVD-ROM, DVD-RAM, DVD-R с большой ёмкостью (до 17 Гбайт).

По технологии применения оптические, магнитооптические и цифровые компакт-диски делятся на 3 основных класса:

  1. Диски с постоянной (нестираемой) информацией (CD-ROM). Это пластиковые компакт-диски диаметром 4,72 дюйма и толщиной 0,05 дюйма. Они изготавливаются с помощью стеклянного диска-оригинала, на который наносится фоторегистрирующий слой. В этом слое лазерная система записи формирует систему питов (меток в виде микроскопических впадин), которая затем переносится на тиражируемые диски-копии. Считывание информации осуществляется также лазерным лучом в оптическом дисководе персонального компьютера. CD-ROM обычно обладают ёмкостью 650 Мбайт и используются для записи цифровых звуковых программ, программного обеспечения для ЭВМ и т.п.;
  2. Диски, допускающие однократную запись и многократное воспроизведение сигналов без возможности их стирания (CD-R; CD-WORM - Write-Once, Read-Many - один раз записал, много раз считал). Используются в электронных архивах и банках данных, во внешних накопителях ЭВМ. Они представляют собой основу из прозрачного материала, на которую нанесён рабочий слой;
  3. Реверсивные оптические диски, позволяющие многократно записывать, воспроизводить и стирать сигналы (CD-RW; CD-E). Это наиболее универсальные диски, способные заменить магнитные носители практически во всех областях применения. Они аналогичны дискам для однократной записи, но содержат рабочий слой, в котором физические процессы записи являются обратимыми. Технология изготовления таких дисков сложнее, поэтому они стоят дороже дисков для однократной записи.
В настоящее время оптические (лазерные) диски являются наиболее надёжными материальными носителями документированной информации, записанной цифровым способом. Вместе с тем активно ведутся работы по созданию ещё более компактных носителей информации с использованием так называемых нанотехнологий, работающих с атомами и молекулами. Плотность упаковки элементов, собранных из атомов, в тысячи раз больше, чем в современной микроэлектронике. В результате один компакт-диск, изготовленный по нанотехнологии, может заменить тысячи лазерных дисков.

Электронные носители информации

Вообще говоря, все рассмотренные ранее носители тоже косвенно связаны с электроникой. Однако имеется вид носителей, где информации хранится не на магнитных/оптических дисках, а в микросхемах памяти. Эти микросхемы выполнены по FLASH-технологии, поэтому такие устройства иногда называют FLASH-дисками (в народе просто «флэшка»). Микросхема, как можно догадаться, диском не является. Однако операционные системы носители информации с FLASH-памятью определяют как диск (для удобства пользователя), поэтому название «диск» имеет право на существование.

Флэш-память (англ. Flash-Memory) - разновидность твердотельной полупроводниковой энергонезависимой перезаписываемой памяти. Флэш-память может быть прочитана сколько угодно раз, но писать в такую память можно лишь ограниченное число раз (обычно около 10 тысяч раз). Несмотря на то, что такое ограничение есть, 10 тысяч циклов перезаписи - это намного больше, чем способна выдержать дискета или CD-RW. Стирание происходит участками, поэтому нельзя изменить один бит или байт без перезаписи всего участка (это ограничение относится к самому популярному на сегодня типу флэш-памяти - NAND). Преимуществом флэш-памяти над обычной является её энергонезависимость - при выключении энергии содержимое памяти сохраняется. Преимуществом флэш-памяти над жёсткими дисками, CD-ROM-ами, DVD является отсутствие движущихся частей. Поэтому флэш-память более компактна, дешева (с учётом стоимости устройств чтения-записи) и обеспечивает более быстрый доступ.

Хранение информации

Хранение информации - это способ распространения информации в пространстве и времени. Способ хранения информации зависит от ее носителя (книга - библиотека, картина - музей, фотография - альбом). Этот процесс такой же древний, как и жизнь человеческой цивилизации. Уже в древности человек столкнулся с необходимостью хранения информации: зарубки на деревьях, чтобы не заблудиться во время охоты; счет предметов с помощью камешков, узелков; изображение животных и эпизодов охоты на стенах пещер.

ЭВМ предназначена для компактного хранения информации с возможностью быстрого доступа к ней.

Информационная система - это хранилище информации, снабженное процедурами ввода, поиска и размещения и выдачи информации. Наличие таких процедур - главная особенность информационных систем, отличающих их от простых скоплений информационных материалов.

От информации к данным

Человек по-разному подходит к хранению информации. Все зависит от того сколько ее и как долго ее нужно хранить. Если информации немного ее можно запомнить в уме. Нетрудно запомнить имя своего друга и его фамилию. А если нужно запомнить его номер телефона и домашний адрес мы пользуемся записной книжкой. Когда информация запомнена (сохранена) ее называют данные.

Данные в компьютере имеют различное назначение. Некоторые из них нужны только в течение короткого периода, другие должны храниться длительное время. Вообще говоря, в компьютере есть довольно много «хитрых» устройств, которые предназначены для хранения информации. Например, регистры процессора, регистровая КЭШ-память и т.п. Но большинство «простых смертных» даже не слышали таких «страшных» слов. Поэтому мы ограничимся рассмотрением оперативной памяти (ОЗУ) и постоянной памяти, к которой относятся уже рассмотренные нами носители информации.

Оперативная память компьютера

Как уже было сказано, в компьютере тоже есть несколько средств для хранения информации. Самый быстрый способ запомнить данные - это записать их в электронные микросхемы. Такая память называется оперативной памятью. Оперативная память состоит из ячеек. В каждой ячейке может храниться один байт данных.

У каждой ячейки есть свои адрес. Можно считать, что это как бы номер ячейки, поэтому такие ячейки еще называют адресными ячейками. Когда компьютер отправляет данные на хранение в оперативную память, он запоминает адреса, в которые эти данные помещены. Обращаясь к адресной ячейке, компьютер находит в ней байт данных.

Регенерация оперативной памяти

Адресная ячейка оперативной памяти хранит один байт, а поскольку байт состоит из восьми битов, то в ней есть восемь битовых ячеек. Каждая битовая ячейка микросхемы оперативной памяти хранит электрический заряд.

Заряды не могут храниться в ячейках долго - они «стекают». Всего за несколько десятых долей секунды заряд в ячейке уменьшается настолько, что данные утрачиваются.

Дисковая память

Для постоянного хранения данных используют носители информации (см. раздел «Виды носителей информации»). Компакт диски и дискеты имеют относительно небольшое быстродействие, поэтому большая часть информации, к которой необходим постоянный доступ, хранится на жестком диске. Вся информация на диске хранится в виде файлов. Для управления доступом к информации существует файловая система. Имеется несколько типов файловых систем.

Структура данных на диске

Чтобы данные можно было не только записать на жесткий диск, а потом еще и прочитать, надо точно знать, что и куда было записано. У всех данных должен быть адрес. У каждой книги в библиотеке есть свой зал, стеллаж, полка и инвентарный номер - это как бы ее адрес. По такому адресу книгу можно найти. Все данные, которые записываются на жесткий диск, тоже должны иметь адрес, иначе их не разыскать.

Файловые системы

Стоит отметить, что структура данных на диске зависит от типа файловой системы. Все файловые системы состоят из структур, необходимых для хранения и управления данными. Эти структуры обычно включают загрузочную запись операционной системы, каталоги и файлы. Файловая система также исполняет три главных функции:

  1. Отслеживание занятого и свободного места
  2. Поддержка имен каталогов и файлов
  3. Отслеживание физического местоположения каждого файла на диске.
Различные файловые системы используются различными операционными системами (ОС). Некоторые OС могут распознавать только одну файловую систему, в то время как другие OС могут распознавать несколько. Некоторые из наиболее распространенных файловых систем:
  • FAT (File Allocation Table)
  • FAT32 (File Allocation Table 32)
  • NTFS (New Technology File System)
  • HPFS (High Performance File System)
  • NetWare File System
  • Linux Ext2 и Linux Swap
FAT

Файловая система FAT используется DOS, Windows 3.x и Windows 95. Файловая система FAT также доступна в Windows 98/Me/NT/2000 и OS/2.

Файловая система FAT реализуется при помощи File Allocation Table (FAT - Таблицы Распределения Файлов) и кластеров. FAT - сердце файловой системы. Для безопасности FAT имеет дубликат, чтобы защитить ее данные от случайного стирания или неисправности. Кластер - самая маленькая единица системы FAT для хранения данных. Один кластер состоит из фиксированного числа секторов диска. В FAT записано, какие кластеры используются, какие являются свободными, и где файлы расположены в пределах кластеров.

FAT-32

FAT32 - файловая система, которая может использоваться Windows 95 OEM Service Release 2 (версия 4.00.950B), Windows 98, Windows Me и Windows 2000. Однако, DOS, Windows 3.x, Windows NT 3.51/4.0, более ранние версии Windows 95 и OS/2 не распознают FAT32 и не могут загружать или использовать файлы на диске или разделе FAT32.

FAT32 - развитие файловой системы FAT. Она основана на 32-битовой таблице распределения файлов, более быстрой, чем 16-битовые таблицы, используемые системой FAT. В результате, FAT32 поддерживает диски или разделы намного большего размера (до 2 ТБ).

NTFS

NTFS (Новая Технология Файловой Системы) доступна только Windows NT/2000. NTFS не рекомендуется использовать на дисках размером менее 400 МБ, потому что она требует много места для структур системы.

Центральная структура файловой системы NTFS - это MFT (Master File Table). NTFS сохраняет множество копий критической части таблицы для защиты от неполадок и потери данных.

HPFS

HPFS (Файловая система с высокой производительностью) - привилегированная файловая система для OS/2, которая также поддерживается старшими версиями Windows NT.

В отличие от файловых систем FAT, HPFS сортирует свои каталоги, основываясь на именах файлов. HPFS также использует более эффективную структуру для организации каталога. В результате доступ к файлу часто быстрее и место используется более эффективно, чем с файловой системой FAT.

HPFS распределяет данные файла в секторах, а не в кластерах. Чтобы сохранить дорожку, которая имеет секторы или не используется, HPFS организовывает диск или раздел в виде групп по 8 МБ. Такое группирование улучшает производительность, потому что головки чтения/записи не должны возвращаться на нулевую дорожку каждый раз, когда ОС нуждается в доступе к информации о доступном месте или местоположении необходимого файла.

NetWare File System

Операционная система Novell NetWare использует файловую систему NetWare, которая была разработана специально для использования службами NetWare.

Linux Ext2 и Linux Swap

Файловые системы Linux Ext2 и Linux были разработаны для ОС Linux OS (Версия UNIX для свободно распространения). Файловая система Linux Ext2 поддерживает диск или раздел с максимальным размером 4 ТБ.

Каталоги и путь к файлу

Рассмотрим для примера структуру дискового пространства системы FAT, как самой простой.

Информационная структура дискового пространства - это внешнее представление дискового пространства, ориентированное на пользователя и определяемое такими элементами, как том (логический диск), каталог (папка, директория) и файл. Эти элементы используются при общении пользователя с операционной системой. Общение осуществляется с помощью команд, выполняющих операции доступа к файлам и каталогам.

Источники информации

  1. Информатика: Учебник. – 3-е перераб. изд. / Под ред. Н.В. Макаровой. – М.: Финансы и статистика, 2002. – 768 с.: ил.
  2. Волк В.К. Исследование функциональной структуры памяти персонального компьютера. Лабораторный практикум. Учебное пособие. Издательство Курганского государственного университета, 2004 г. – 72 с.

Введение стр. 3

Современные материальные носители документированной информации, их классификация и характеристика

I. Современные материальные носители стр. 5

II. Классификация современных материальных носителей стр. 6

III. Характеристика современных материальных носителей

1. Магнитные носители стр. 9

2. Пластиковые карты стр. 12

3. Оптические носители стр. 13

4. Носители на базе флэш-памяти стр. 17

5. Носители объёмного изображения стр. 19

Заключение стр. 23

Используемая литература стр. 26

Введение

Понятие документ является центральным, фундаментальным в понятийной системе документоведения. Это понятие широко используется во всех сферах общественной деятельности. Почти в каждой отрасли знания имеется одна или несколько версий для его понимания в соответствии со спецификой тех объектов, которым придаётся статус документа.

Понятие документ выступает как родовое для видовых: опубликованный, не опубликованный, кино-, фоно-, фотодокумент и т.п. с этой точки зрения разновидностью документа являются: буклет, чертёж, карта, фильм, магнитная лента, магнитный и оптический диск.

Вспомним ещё раз определение документа: информация, закреплённая на материальном носителе в стабильной знаковой форме созданным человеком способом для её передачи в пространстве и времени. Из определения следует, что документ не существует в готовом виде, его нужно создать, т.е. зафиксировать в стабильной форме. Процесс закрепления (фиксации) информации на материальном носителе называется документированием.

В процессе документирования происходит преобразование социальной информации из одной знаковой формы в другую, т.е. кодирование информации, без которого невозможна реализация основных функций документа – функций закрепления и передачи информации в пространстве и времени.

Информатизация общества, бурное развитие микрографии, компьютерной техники и проникновение её во все сферы деятельности определили появление документов на новейших носителях информации. Наличие обобщающего понятия документ не исключает возможности существования более частных, узкоспециализированных его трактовок применительно к разным сферам общественной деятельности и научным дисциплинам: источниковедению, делопроизводству, дипломатике, информатике, юридической науке.

Среди этих новейших носителей информации выделяется группа «Современных носителей документированной информации», которые используются в настоящее время, приходя на смену старым носителям всё большей популярностью. Например, кажется не так давно очень распространённый носитель информации – гибкий магнитный диск или дискета практически не используется, на смену ему пришли оптические диски и носители на базе флэш-памяти, тоже явление происходит и в аудио- и видеотехнике на смену аудио- и видеокассет пришли оптические диски.

Данная тема «Современные материальные носители информации, их классификация и характеристика» касается и документно-коммуникационной деятельности, так как рассматривает средства, которые упрощают обмен информацией.

Я считаю, что выбранная мной тема курсовой работы актуальна в настоящее время, так как знание и умение пользоваться современными носителями информации позволяет идти в ногу со временем и ускорять процесс создания и передачи информации в пространстве и времени, а также улучшить условия хранения документированной информации.

Современные материальные носители документированной информации, их классификация и характеристика

I. Современные материальные носители

Информатизация общества, бурное развитие компьютерной техники и проникновение её во все сферы человеческой деятельности определили появление документов на современных, нетрадиционных, т.е. не бумажных носителях информации.

Понятие «современный» и «нетрадиционный» документ во многом условны и служат для названия группы документов, которые в отличие от традиционных, т.е. бумажных, как правило, требуют для воспроизведения информации современных технических средств. Все это связано с появлением электронно-вычислительных машин – компьютеров, представляющих собой комплексы технических средств, предназначенных для автоматического преобразования информации, используются для записи и воспроизведения как текстовой, так и графической, и аудио-, и видеоинформации.

Появление современных носителей связано и с тем, что за полвека своего существования сменилось уже пять поколений компьютеров, причём от поколения к поколению на порядок и более возрастали их производительность и ёмкость запоминающих устройств. А также появлялись новые, более совершенные периферийные устройства – принтеры, сканеры, копиры, а в настоящее время всё чаще используются многофункциональные устройства (МФУ), которые облегчают работу офисных служащих, позволяющие получать твёрдую копию документа не только из памяти компьютера, но с современного носителя.

С моей точки зрения к современным носителя документированной информации относятся: магнитные карты, магнитные жёсткие диски, оптические диски, голограммы, носители на базе флэш-памяти. Может быть это не правильное суждение, но данные носители активно используются в настоящее время. Они пришли на смену хорошо всем известным аудио-, видеокассетам, микроформам, гибким дискам или дискетам. Их можно назвать устаревшими. Тоже самое произойдёт и с современными носителями информации, потому что современными они являются в данный момент. Лет через десять на смену современным носителям придут ещё более современные носители, так как человечество не стоит на одном месте, а прогрессирует и развивается бурными темпами. И через лет десять рассматриваемые в данной работе современные материальные носители документированной информации назовут устаревшими.

II . Классификация современных материальных носителей

Документ представляет собой двуединство информации и материального носителя. Поэтому важными признаками («сильными отличиями»), которые могут быть положены в основу классификации, являются особенности строения, формы материала, на котором фиксируется информация. В частности, по этому критерию всё многообразие документов содержащихся на современных материальных носителях можно представить в виде класса:

· документы на искусственной материальной основе (на полимерных материалах).

В свою очередь, документы на искусственной материальной основе можно отнести к многослойным, в которых имеется как минимум два слоя – специальный рабочий слой и подложка (магнитные носители, оптические диски и др.). При этом основа подложка может быть всякой разной – бумажной, металлической, стеклянной, керамической, деревянной, тканью, плёночной или пластиночной пластмассовой. На основу наносится от одного до нескольких (иногда до 6-8) слоёв. В результате материальный носитель предстаёт порой в виде сложной полимерной системы.

Существуют также энергетические носители.

По форме материального носителя информации документы могут быть:

· карточными (пластиковые карты);

· дисковыми (диск, компакт-диск, CD-ROM, видеодиск). Местом размещения информации являются концентрические дорожки – оптические диски.

В зависимости от возможности транспортировки материальных носителей документы можно разделить на:

· стационарные (жёсткий магнитный диск в компьютере);

· портативные (оптические диски, носители на базе флэш-памяти).

В зависимости от способа документирования документы на современных носителях информации можно разделить на:

· магнитные (магнитные жёсткие диски, магнитные карты);

· оптические (лазерные) – документы, содержащие информацию, записанную с помощью лазерно-оптической головки (оптические, лазерные диски);

· голографические – созданные с использованием лазерного луча и фоторегистрирующего слоя материального носителя (голограммы).

· документы на машинных носителях – электронные документы, созданные с использованием носителей и способов записи, обеспечивающих обработку его информации электронно-вычислительной машиной .

Документы на современных материальных носителях информации, как правило, не поддаются непосредственному восприятию, считыванию. Информация хранится на машинных носителях, а часть документов создаётся и используется непосредственно в машиночитаемой форме.

По предназначенности для восприятия рассматриваемую документы относятся к машиночитаемым. Это документы, предназначенные для автоматического воспроизведения находящейся в них информации. Содержание таких документов полностью или частично выражено знаками (матричное расположение знаков, цифр и т.п.), приспособленным для автоматического считывания. Информация записывается на магнитных лентах, картах, дисках и подобных носителях.

Документы на современных носителя информации относятся к классу технически-кодированных, содержащих запись, доступную для воспроизведения только с помощью технических средств, в том числе звуковоспроизводящей, видеовоспроизводящей аппаратуры или компьютера.

По характеру связи документов с технологическими процессами в автоматизированных системах различают:

· машинно-ориентированный документ, предназначенный для записи считывания части содержащейся в нём информации средствами вычислительной техники (заполненные специальные формы бланков, анкет и т. п.);

· машиночитаемый документ, пригодный для автоматического считывания содержащейся в ней информации с помощью сканера (текстовые, графические);

· документ на машиночитаемом носителе, созданный средствами вычислительной техники, записанный на машиночитаемый носитель: жёсткий магнитный диск, оптический диск, носитель на базе флэш-памяти – и оформленный в установленном порядке;

· документ-машинограмма (распечатка), созданный на бумажном носителе с помощью средств вычислительной техники и оформленный в установленном порядке;

· документ на экране дисплея, созданный средствами вычислительной техники, отражённый на экране дисплея (монитора) и оформленный в установленном порядке;

· электронный документ, содержащий совокупность информации в памяти вычислительной машины, предназначенный для восприятия человеком с помощью соответствующих программных и аппаратных средств.

III . Характеристика современных материальных носителей

1. Магнитные носители

Из всех носителей магнитных документов хочу выделить магнитный диск – носитель информации в виде диска с ферромагнитным покрытием для записи. Магнитные диски делятся на жёсткие (винчестеры) и гибкие (дискеты).

Из этой группы в своей работе я буду рассматривать только винчестеры, так как дискеты, их я называю устаревшими носителями информации, практически вытеснены оптическими дисками и носителями на базе флэш-памяти.

Жёсткие диски

Жёсткие магнитные диски, называемые винчестерами, предназначены для постоянного хранения информации, используемой при работе с персональным компьютером и устанавливаются внутри него.

Винчестеры значительно превосходят гибкие диски. Они имеют лучшие характеристики ёмкости, надёжности и скорости доступа к информации. Поэтому их применение обеспечивает скоростные характеристики диалога пользователя и реализуемых программ, расширяет системные возможности по использованию баз данных, организации многозадачного режима работы, обеспечивает эффективную поддержку механизма виртуальной памяти. Однако стоимость винчестеров намного выше стоимости гибких дисков.

Винчестер смонтирован на оси-шпинделе, приводимой в движение специальным двигателем. Он содержит от одного до десяти дисков (platters). Скорость вращения двигателя для обычных моделей может составлять 3600, 4500, 5400, 7200, 10000 или даже 12000 об/мин. Сами диски представляют собой обработанные с высокой точностью керамические или алюминиевые пластины, на которые нанесен магнитный слой.

Важнейшей частью винчестера являются головки чтения и записи (read-write head). Как правило, они находятся на специальном позиционере (head actuator). Для перемещения позиционера используются преимущественно линейные двигатели (типа voice coil - «звуковая катушка»). В винчестерах применяются несколько типов головок: монолитные, композитные, тонкопленочные, магниторезистивные (MR, Magneto-Resistive), а также головки с усиленным магниторезистивным эффектом (GMR, Giant Magneto-Resistive). Магниторезистивная головка, разработанная IBM в начале 1990-х годов, представляет собой комбинацию из двух головок: тонкопленочной для записи и магниторезистивной для чтения. Подобные головки позволяют почти в полтора раза увеличить плотность записи. Еще больше позволяют повысить плотность записи GMR-головки.

Внутри любого винчестера обязательно находится электронная плата, которая расшифровывает команды контроллера жесткого диска, стабилизирует скорость вращения двигателя, генерирует сигналы для головок записи и усиливает их от головок чтения.

Различают два вида жёстких магнитных дисков.

Жёсткий диск (hard disk) – встроенный накопитель (дисковод) на жёстком магнитном диске пакет закреплённых один над другим магнитных дисков, извлечение которых в процессе эксплуатации электронных вычислительных машинах является невозможным.

Съёмный жёсткий диск (removable hard disk) – пакет магнитных дисков, заключённых в защитную оболочку, которые в процессе эксплуатации электронных вычислительных машинах могут выниматься из дисковода на сменном жёстком диске и заменяться другим. Использование этих дисков обеспечивает практически неограниченный объём внешней памяти ЭВМ .

В ходе выполнения процедуры так называемого низкоуровневого форматирования (low-level formatting) на жесткий диск записывается информация, которая определяет разметку винчестера на цилиндры и секторы. Структура формата включает в себя различную служебную информацию: байты синхронизации, идентификационные заголовки, байты контроля четности. В современных винчестерах такая информация записывается однократно при изготовлении винчестера. Повреждение этой информации при самостоятельном низкоуровневом форматировании чревато полной неработоспособностью диска и необходимостью восстановления этой информации в заводских условиях.

Емкость винчестера измеряется в мегабайтах. К концу 1990-х годов средняя емкость жестких дисков для настольных систем достигла 15 гигабайт, а в серверах и рабочих станциях с интерфейсом SCSI применяются винчестеры емкостью свыше 50 гигабайт. В большинстве современных персональных компьютеров применяются жесткие диски емкостью 40 гигабайт.

Одной из основных характеристик жесткого диска является среднее время, в течение которого винчестер находит нужную информацию. Это время обычно представляет собой сумму времени, необходимого для позиционирования головок на нужную дорожку и ожидания требуемого сектора. Современные винчестеры обеспечивают доступ к информации за 8-10 мс.

Другой характеристикой винчестера является скорость чтения и записи, но она зависит не только от самого диска, но и его контроллера, шины, быстродействия процессора. У стандартных современных жестких дисков эта скорость составляет 15-17 Мбайт/с.

2. Пластиковые карты

Пластиковые карты представляют собой устройство для магнитного способа хранения информации и управления данными.

Пластиковые карты состоят из трёх слоёв6 полиэфирной основы, на которую наносится тонкий рабочий слой, и защитного слоя. В качестве основы обычно используется поливинилхлорид, который легко обрабатывается, устойчив к температурным, химическим и механическим воздействиям. Однако в целом ряде случаев основой для магнитных карт служит псевдопластик – плотная бумага или картон с двусторонним ламинированием.

Рабочий слой (ферромагнитный порошок) наносится на пластик методом горячего тиснения в виде отдельных узких полосок. Магнитные полоски по своим физическим свойствам и сфере применения делятся на два типа: высокоэрцетивные и низкоэрцетивные . Высокоэрцетивные полоски имеют чёрный цвет. Они устойчивы к воздействию магнитных полей. Для их записи нужна более высокая энергия. Используются в качестве кредитных карт, водительских удостоверений, т. е. в тех случаях, когда требуется повышенная износостойкость и защищённость. Низкоэрцетивные магнитные полосы имеют коричневый цвет. Они менее защищены, но зато проще и быстрее записываются. Используются на картах ограниченного срока действия, в частности, для проезда в метрополитене.

Следует заметить, что, кроме магнитного, существуют и другие способы записи информации на пластиковую карту: графическая запись, эмбоссирование (механическое выдавливание), штрих-кодирование, лазерная запись. В частности, в последнее время в пластиковых картах вместо магнитных полосок всё более широко стали применяться электронные чипы. Такие карты, в отличие от простых магнитных, стали называть интеллектуальными или смарт-картами (от англ. smart – умный). Встроенный в них микропроцессор позволяет хранить значительный объём информации, даёт возможность производить необходимые расчёты в системе банковских и торговых платежей, превращая таким образом, пластиковые карты в многофункциональные носители информации.

По способу доступа к микропроцессору (интерфейсу) смарт-карты могут быть:

· с контактным интерфейсом (т. е. при совершении операции карта вставляется в электронный терминал;

· с дуальным интерфейсом (могут действовать как контактно, так и бесконтактно, т. е. обмен данными между картой и внешними устройствами может осуществляться через радиоканал).

Защитный слой магнитных пластиковых карт состоит из прозрачной полиэфирной плёнки. Он призван предохранять рабочий слой от износа. Иногда используются покрытия, предохраняющие от подделки и копирования. Защитный слой обеспечивает до двух десятков тысяч циклов записи и чтения.

Размеры пластиковых карт стандартизированы. В соответствии с международным стандартом ISO-7810 их длина равна 85,595 мм, ширина – 53,975 мм, толщина – 3,18 мм.

Сфера применения пластиковых и псевдопластиковых магнитных карт достаточно обширна. Помимо банковских систем, они используются в качестве компактного носителя информации, идентификатора автоматизированных систем учёта и контроля, удостоверения, пропуска, телефонной и Интернет карты, билета для проезда в транспорте.

3. Оптические носители

Непрерывный научно-технический поиск материальных носителей документированной информации с высокой долговечностью, большой информационной ёмкостью при минимальных физических размерах носителя обусловил появление оптических дисков, получивших в последнее время широкое распространение. Они представляют собой пластиковые или алюминиевые диски, предназначенные для записи или воспроизведения звука, изображения, буквенно-цифровой и другой информации при помощи лазерного луча.

Стандартные компакт-диски выпускаются диаметром 120 мм (4,75 дюйма), толщиной – 1,2 мм (0,05 дюйма), с диаметром центрального отверстия 15 мм (0,6 дюйма). Они имеют жёсткую очень прочную прозрачную, обычно пластиковую (поликарбонатную) основу толщиной 1мм. Однако возможно использование в качестве основы и других материалов, например, оптический носитель с основой из картона.

Рабочий слой оптических дисков на первых порах изготавливался в виде тончайших плёнок легкоплавких материалов (теллур) или сплавов (теллур-селен, теллур-углерод, теллур-свинец и др.), а в последствии – главным образом на основе органических красителей. Информация на CD фиксируется на рабочем слое в виде спиральной дорожки с помощью лазерного луча, выполняющего роль преобразователя сигналов. Дорожка идёт от центра диска к его периферии.

При вращении диска лазерный луч следует вдоль дорожки, ширина которой близка к 1 мкм, а расстояние между двумя соседними дорожками – до 1,6 мкм. Формируемые на диске лазерным лучом метки (питы) имеют глубину около пяти миллиардных долей дюйма, а площадь 1-3 мкм 2 . внутренний диаметр записи составляет 50 мм, наружный – 116 мм. Общая длина всей спиральной дорожки на диске составляет около 5 км. На каждый мм радиуса диска приходится 625 дорожек. Всего на диске располагается 20 тыс. витков спиральной дорожки.

Для хорошего отражения лазерного луча используется так называемое «зеркальное» покрытие дисков алюминием (в обычных дисках) или серебром (в записываемых и перезаписываемых). На металлическое покрытие наносится тонкий защитный слой из поликарбоната или специального лака, обладающей высокой механической прочностью, поверх которого размещаются рисунки и надписи. Нужно иметь в виду, что именно эта, окрашенная сторона диска является более уязвимой, нежели противоположная, с которой осуществляется считывание информации через всю толщину диска.

Технология изготовления оптических дисков является достаточно сложной. Вначале создаётся стеклянная матрица – основа диска. С этой целью пластик (поликарбонат) разогревается до 350 градусов, затем следует его «впрыскивание в форму, мгновенное охлаждение и автоматическая подача на следующую технологическую операцию. На стеклянный диск-оригинал наносится фоторегистрирующий слой. В этом слое лазерной системой записи формируется система Питов, т.е. создаётся первичный «мастер-диск». Затем по «мастер-диску» путём литья под давлением осуществляется массовое тиражирование, создание дисков-копий.

Информационная ёмкость дисков обычно составляет менее 650 Мбайт. На одном диске можно записать несколько сот тысяч страниц машинописного текста. Для сравнения: весь книжный фонд Российской государственной библиотеки, в случае его перевода на компакт-диски, можно уместить в обычной трёхкомнатной квартире. Между тем уже разработаны оптические диски и с гораздо большей ёмкостью – свыше 1 Гбайт.

Поскольку запись и воспроизведение информации на оптических дисках являются бесконтактными, постольку практически исключается возможность механического повреждения таких дисков.

Он также как и магнитный документ относится к современным носителя информации, основанным на оптических способах записи, считывания и воспроизведения. К оптическим документам относятся оптические диски и видеодиски: компакт-диски, CD-ROM, DVD-диск.

Схема конструкции оптического видеодиска: 1 - наружный слой из прозрачной пластмассы; 2 - металлизированная отражающая дорожка записи; 3 - твердая непрозрачная пластиковая основа.

На оптический диск информация записывается и считывается с помощью сфокусированного лазерного луча.

В зависимости от возможности использования для записи и считывания оптические диски делят на два вида:

1. WORM (Write Once Read Many) – накопители, предназначенные для записи информации и её хранения;

2. CD-ROM (Compact Disk Read Only Memory) - накопители, предназначенные для чтения информации.

Оптические диски можно разделить на типы:

· Аудио-компакт-диск - это диск с постоянной (нестираемой) звуковой информацией, записанной в двоичном коде;

· CD-ROM – диск с постоянной памятью, предназначенный для хранения и чтения значительных объёмов информации. Он содержит компьютерную информацию, которая считывается дисководом, подключённым к ПЭВМ;

· Видео-компакт-диск – диск, на котором в цифровой форме записывается текстовая, изобразительная и звуковая информация, а также программы ЭВМ;

· DVD-диск – разновидность нового поколения оптических дисков, на котором в цифровой форме записывается текстовая, видео и звуковая информация, а также компьютерные данные;

· Магнитооптический диск – диски состоящие из разных комбинаций гибкого магнитного диска, винчестера и оптического диска.

4. Носители на базе флэш-памяти

Один из самых современных и перспективных носителей документированной информации – твёрдотельная флэш-память, представляющая собой микросхему на кремниевом кристалле. Этот особый вид энергонезависимой перезаписываемой полупроводниковой памяти. Название связано с огромной скоростью стирания микросхемы флэш-памяти.

Для хранения информации флэш-носители не требуют дополнительной энергии, которая необходима только для записи. Причём по сравнению с жёсткими дисками и носителями CD-ROM для записи информации на флэш-носителях требуется в десятки раз меньше энергии, поскольку не нужно приводить в действие механические устройства, как раз и потребляющие большую часть энергии. Сохранение электрического заряда в ячейках флэш-памяти при отсутствии электрического питания обеспечивается с помощью так называемого плавающего затвора транзистора.

Носители на базе флэш-памяти могут хранить записанную информацию очень длительное время (от 20 до 100 лет). Будучи упакованы в прочный жёсткий пластиковый корпус, микросхемы флэш-памяти способны выдерживать значительные механические нагрузки (в 5-10 раз превышающие предельно допустимые для обычных жёстких дисков). Надёжность такого рода носителей обусловлена и тем, что они не содержат механически движущихся частей. В отличие от магнитных, оптических и магнитооптических носителей, здесь не требуется применение дисководов с использованием сложной прецизионной механики. Их отличает также бесшумная работа.

Кроме того, эти носители очень компактны.

Информацию на флэш-носителях можно изменять, т.е. перезаписывать. Помимо носителей с единственным циклом записи, существует флэш-память с количеством допустимых циклов записи/стирания до 10000, а также от 10000 до 100000 циклов. Все эти типы принципиально не отличаются друг от друга.

Несмотря на миниатюрные размеры, флэш-карты обладают большой ёмкостью памяти, составляющей многие сотни Мбайт. Они универсальны по своему применению, позволяя записывать и хранить любую цифровую информацию, в том числе музыкальную, видео- и фотографическую.

Флэш-память вошла в разряд основных носителей информации, широко используемых в разных цифровых мультимедийных устройствах – в портативных компьютерах, в принтерах, цифровых диктофонах, сотовых телефонах, электронных часах, записных книжках, телевизорах, кондиционерах, МРЗ-плеерах, в цифровых фото- и видеокамерах.

Флэш-карты являются одним из наиболее перспективных видов материальных носителей документированной информации. Уже разработаны карты нового поколения – Secure Digital, обладающие криптографическими возможностями защиты информации и высокопрочным корпусом, существенно снижающим риск повреждения носителя статистическим электричеством.

Выпущены карты ёмкостью 4 Гбайт. На них можно поместить около 4000 снимков высокого разрешения, или 1000 песен в формате МРЗ, или же полный DVD-фильм. Тем временем набирает свои обороты использования флэш-карта ёмкостью 8 Гбайт.

Налажено производство так называемых неподвижных флэш-дисков ёмкостью в сотни Мбайт, тоже представляющих собой устройство для хранения и транспортировки информации.

Таким образом, совершенствование технологии флэш-памяти идёт в направлении увеличения ёмкости, надёжности, компактности, многофункциональности носителей, а также снижения их стоимости.

5. Носители объёмного изображения

Голограмма современный носитель объёмного изображения.

Представляет собой документ, содержащий изображение, запись и воспроизведение которого производится оптическим способом с использованием лазерного луча без использования линз.

Голограмма создаётся с помощью голографии – метода точной записи, воспроизведения и преобразования волновых полей. Он основан на интерференции волн – явлении, наблюдаемом при сложении поперечных волн (световых, звуковых и др.) либо при усилении волн в одних точках документа и ослаблении в других в зависимости от разности фаз интерферирующих волн. На фотопластинку одновременно с «сигнальной» волной, рассеянной объектом, направляют «опорную» волну от того же источника света. Возникающая при интерференции этих волн картина, содержащая информацию об объекте, фиксируется на светочувствительной поверхности (голограмме). При облучении голограммы или её участка опорной волной можно увидеть объёмное изображение объекта.

Особенностью голографии является получение зрительного образа предмета, который обладает всеми признаками оригинала. При этом достигается полная иллюзия присутствия предмета.

На голограмме запись и воспроизведение информации производится при помощи лазера. Качество изображения зависит от монохроматичности излучения лазера и разрешающей способности фотоматериалов, используемых при получении голограмм. Если спектр излучения лазера широкий, то результирующая интерференционная картина будет не чёткой и размытой. Поэтому при изготовлении голограмм применяют лазеры с очень узкой спектральной линией излучения. На качество голографического изображения влияют условия съёмки, разрешающая способность фотоматериалов. Внешне голограмма напоминает засвеченный фотографический негатив, на которой нет никаких признаков «фотографируемого» предмета. Однако достаточно осветить голограмму лучом лазера как появляется объёмное изображение. Предметы находятся в глубине фотопластинки, как отражение в зеркале.

С помощью голографии можно получать такие объёмные изображения, которые создают полную иллюзию реальности наблюдаемых предметов – зрительное ощущение объемности и цвета, включая все оттенки цветов и ракурса. На голограмме изображение предмета настолько совершенно и правдоподобно, что наблюдатель воспринимает его как реально существующий предмет.

Голограмма может быть плоской или объёмной. Чем больше объём голограммы (толщина светочувствительной плёнки), тем лучше реализуются все её свойства.

Голограмма отличается от обычной фотографии так же, как скульптура от картины. В обычной фотографии точка изображения на фотопластинке соответствует некоторой точке объекта. В голографии каждая точка объекта испускает рассеянную волну, которая попадает на всю поверхность голограммы. В результате любая точка объекта соответствует всей поверхности голограммы: если разбирать фотопластинку, на которой зарегистрирована голограмма, любой её части достаточно для того, чтобы восстановить изображение рассеивающего объекта в трёх измерениях. Это напоминает ситуацию, когда разбивается объектив. С помощью любого из его осколков можно получить изображение предмета.

В голографии используется свойство когерентности лазерного луча: волновая поверхность (волновой фронт) некоторого луча записывается в форме интерференционных полос на светочувствительный материал или фотопластинку, которая называется голограммой. При считывании голограммы восстанавливается исходный волновой фронт. Иными словами, лазерный луч расщепляется на два луча, один из которых проецируется на объект съёмки, и, отражённый от этого объекта, свет попадает на светочувствительный материал; второй луч непосредственно проецируется на светочувствительный материал.

С помощью этих двух лучей записывается интерференционная картина. Когда на изготовленную голограмму проецируется лазерный луч, то всплывает объёмное изображение объекта съёмки. Этот процесс называется восстановлением. Если рассматривать голограмму в микроскоп, то видна система чередующихся светлых и тёмных полос. Интерференционный узор реальных объектов весьма сложен.

Голограмму можно изготовить и иным способом, благодаря которому объёмное изображение можно увидеть при обычном свете.

Поскольку голограмма позволяет записывать изображение вплоть до фазовых составляющих светового луча, то на ней можно хранить трёхмерную информацию об объекте съёмки. В настоящее время эта технология используется в считывателях штрихового кода, звукоснимателях для оптических дисков, также её можно успешно использовать для преобразования информации в оптических компьютерах.

Большинство разрабатываемых и внедряемых способов голографической регистрации и обработки информационных массивов имеют чаще всего вид печатных документов. Голограмма представляет собой оптический элемент, формирующий изображение без помощи внешней оптики, что является важнейшим преимуществом. На одну голограмму можно нанести до 150 изображений, причём эти изображения совершенно не мешают друг другу при их воспроизведении. Необходимо только соблюдать угол, под которым каждое изображение записывалось. Голограмма помехоустойчива, порча её некоторой части не приводит к потере всего изображения. Поскольку каждая точка объекта записывается практически на всей площади голограммы, царапины, пыль, посторонние включения в эмульсию вызывают лишь незначительные ухудшения изображения и снижение его яркости.

На квадратном сантиметре поверхности плёнки можно вместить 100 млн бит информации. А на пластинку калий-брома размером 2,5*2,5*0,2 см можно записать около 300 тысяч изображений документной информации, приблизительно целый архив большой библиотеки.

Изобретение голограмм имеет огромное значение. Развивающаяся вычислительная техника требует долговременных и запоминающих устройств с большим объёмом памяти. Электронная память успешно справляется с этой работой. Но ещё больше подходят для этих целей голографические системы памяти. Ёмкость голографической памяти может составить 10 6 – 10 8 бит. В течении микросекунд она выбирает данные из ячеек памяти.

Заключение

Рассмотрев данную тему можно сказать, что с развитием науки и техники будут появляться новые носители информации, более совершенные, которые будут вытеснять устаревшие носители информации, которые мы используем сейчас.

Широкое распространение оптических дисков связано с целым рядом их преимуществ по сравнению с магнитными носителями, а именно: высокая надёжность при хранении, большой объём сохраняемой информации, записывание на одном диске звуковой, графической и буквенно-цифровой, быстрота поиска, экономичное средство хранения и предоставления информации, они обладают хорошим соотношением «качество/цена».

Что же касается жестких дисков, то без них пока ещё ни один компьютер не обходился. В развитии жёстких дисков отчётливо прослеживается основная тенденция – постепенное повышение плотности записи, сопровождающееся увеличением скорости вращения шпиндельной головки и уменьшением времени доступа к информации, а в конечном счёте – увеличением производительности. Создание новых технологий постоянно усовершенствует этот носитель, он меняет свою ёмкость до 80 – 175 Гбайт. В более отдалённой перспективе ожидается появления носителя, в котором роль магнитных частиц будут играть отдельные атомы. В результате его ёмкость в миллиарды раз превысит существующие в настоящее время стандарты. Также есть одно преимущество утерянную информацию можно восстановить с помощью определённых программ.

Совершенствование технологии флэш-памяти идёт в направлении увеличения ёмкости, надёжности, компактности, многофункциональности носителей, а также снижения их стоимости.

На стадии разработки находятся голографические цифровые носители информации ёмкостью до 200 Гбайт. Они имеют форму диска, состоящего из трёх слоёв. На стеклянную подложку толщиной 0,5 мм наносится записывающий (рабочий) слой толщиной 0,2 мм и полумиллиметровый прозрачный защитный слой с отражающим покрытием.

Будущее развитие документа связано с компьютеризацией документно-коммуникационной системы, при этом традиционные виды документов сохранятся в информационном обществе наряду с нетрадиционными видами носителей информации, обогащая и дополняя друг друга.

Документы, будучи массовым общественным продуктом, отличаются сравнительно низкой долговечностью. Во время своего функционирования в оперативной среде и особенно при хранении они подвергаются многочисленным негативным воздействиям, а носители не только подвергаются повреждениям во внешней среде, они подвержены техническому (по уровню развития оборудования) и логическому (связано с содержанием информации, программным обеспечением и стандартам сохранности информации) старению.

В связи с этими факторами активно ведутся работы по созданию компактных носителей, работающих с атомами и молекулами. Плотность упаковки элементов, собранных из атомов, в тысячи раз больше, чем в современной микроэлектронике. В результате один компакт-диск, изготовленный по такой технологии, может заменить тысячи лазерных дисков.

Стремительное развитие новейших информационных технологий приводит, таким образом, к созданию всё новых, более информационно ёмких, надёжных и доступных по цене носителей документированной информации.

Будущие документоведы должны быть готовы к этому психологически, теоретически и технологически. Нам необходимо идти «в ногу со временем», так как документоведение неразрывно связано с информатикой, где наука не стоит на одном месте.

Когда-нибудь в России будет использоваться многофункциональный носитель, в котором будет храниться информация о человеке, позволяющий его использование одновременно как документ: устанавливающий личность, несущий в себе информацию банковских карт, медицинские данные о заболеваниях, его можно будет использовать в транспорте, библиотеке и т. д. Это всё будет возможным только при развитии документоведения, информатики, юриспруденции, и будет зависеть от людей готовы ли они к таким глобальным переменам.

Используемая литература:

1. ГОСТ З 51141-98. Делопроизводство и архивное дело. Термины и определения. М.: Изд-во стандартов, 1998.

2. Кушнаренко Н.Н. Документоведение. Учебник. – К.: Знання, 2006.

3. Ларьков Н.С. Документоведение. – М.: Восток-Запад, 2006.

4. Большая энциклопедия Кирилла и Мефодия на DVD. – ООО «Уральский электронный завод», 2007. Лиц. ВАФ № 77-15


ГОСТ З 51141-98. Делопроизводство и архивное дело. Термины и определения. М.: Изд-во стандартов, 1998.

Кушнаренко Н.Н. Документоведение. – К.: Знання, 2006. – С. 432.

Ларьков Н.С. Документоведение. – М.: Восток-Запад, 2006. – С. 174.

Большая энциклопедия Кирилла и Мефодия на DVD. – ООО «Уральский электронный завод», 2007. Лиц. ВАФ № 77-15

Кушнаренко Н.Н. Документоведение. – К.: Знання, 2006. – С. 451.