Найти функцию распределения F(x). Непрерывные случайные величины Случайная величина задана плотностью

В отличие от дискретной случайной величины непрерывные случайные величины невозможно задать в виде таблицы ее закона распределения поскольку невозможно перечислить и выписать в определенной последовательностей все ее значения. Одним из возможных способов задания непрерывной случайной величины является использование функции распределения.

ОПРЕДЕЛЕНИЕ. Функцией распределения называют функцию, определяющую вероятность того, что случайная величина примет значение, которое изображается на числовой оси точкой, лежащей левее точки х, т.е.

Иногда вместо термина «Функция распределения» используют термин «Интегральная функция».

Свойства функции распределения:

1. Значения функции распределения принадлежит отрезку : 0F(x)1
2. F(x) - неубывающая функция, т.е. F(x 2)F(x 1), если x 2 >x 1

Следствие 1. Вероятность того, что случайная величина примет значение, заключенное в интервале (a,b), равна приращению функции распределения на этом интервале:

P(aX

Пример 9. Случайная величина Х задана функцией распределения:

Найти вероятность того, что в результате испытания Х примет значение, принадлежащее интервалу (0;2): P(0

Решение: Так как на интервале (0;2) по условию, F(x)=x/4+1/4, то F(2)-F(0)=(2/4+1/4)-(0/4+1/4)=1/2. Итак, P(0

Следствие 2. Вероятность того, что непрерывная случайная величина Х примет одно определенное значение, равна нулю.

Следствие 3. Если возможные значения случайной величины принадлежат интервалу (а;b), то: 1) F(x)=0 при xa; 2) F(x)=1 при xb.
Справедливы следующие предельные соотношения:

График функции распределения расположен в полосе, ограниченной прямыми у=0, у=1 (первое свойство). При возрастании х в интервале (а;b), в котором заключены все возможные значения случайной величины, график «подымается вверх». При xa ординаты графика равны нулю; при xb ординаты графика равны единице:


Рисунок-1

Пример 10. Дискретная случайная величина Х задана таблицей распределения:

X 1 4 8
P 0.3 0.1 0.6

Найти функцию распределения и построить ее график.
Решение: Функция распределения аналитически может быть записана так:


Рисунок-2

ОПРЕДЕЛЕНИЕ: Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) - первую производную от функции распределения F(x): f(x)=F"(x)

Из этого определения следует, что функция распределения является первообразной для плотности распределения.

Теорема. Вероятность того, что непрерывная случайная величина Х примет значение, принадлежащее интервалу (а;b) равна определенному интегралу от плотности распределения, взятому в пределах от а до b:

(8)

Свойства плотности распределения вероятностей:

1. Плотность вероятностей является неотрицательной функцией: f(x)0.
2. Определенный интеграл от -∞ до +∞ от плотности распределения вероятностей непрерывной случайной величины равен 1: f(x)dx=1.
3. Определенный интеграл от -∞ до x от плотности распределения вероятностей непрерывной случайной величины равен функции распределения этой величины: f(x)dx=F(x)

Пример 11. Задана плотность распределения вероятностей случайной величины Х

Найти вероятность того, что в результате испытания Х примет значение, принадлежащее интервалу (0,5;1).

Решение: Искомая вероятность:

Распространим определение числовых характеристик дискретных величин на величины непрерывные. Пусть непрерывная случайная величина Х задана плотностью распределения f(x).

ОПРЕДЕЛЕНИЕ. Математическим ожиданием непрерывной случайной величины Х, возможные значения которой принадлежат отрезку , называют определенный интеграл:

M(x)=xf(x)dx (9)

Если возможные значения принадлежат всей оси Ох, то:

M(x)=xf(x)dx (10)

Модой M 0 (X) непрерывной случайной величины X называют то ее возможное значение, которому соответствует локальный максимум плотности распределения.

Медианой M e (X) непрерывной случайной величины X называют то ее возможное значение, которое определяется равенством:

P{X e (X)}=P{X>M e (X)}

ОПРЕДЕЛЕНИЕ. Дисперсией непрерывной случайной величины называют математическое ожидание квадрата ее отклонения. Если возможные значения Х принадлежат отрезку , то:

D(x)= 2 f(x)dx (11)
или
D(x)=x 2 f(x)dx- 2 (11*)

Если возможные значения принадлежат всей оси х, то.

Математическое ожидание

Дисперсия непрерывной случайной величины X , возможные значения которой принадлежат всей оси Ох, определяется равенством:

Назначение сервиса . Онлайн калькулятор предназначен для решения задач, в которых заданы либо плотность распределения f(x) , либо функция распределения F(x) (см. пример). Обычно в таких заданиях требуется найти математическое ожидание, среднее квадратическое отклонение, построить графики функций f(x) и F(x) .

Инструкция . Выберите вид исходных данных: плотность распределения f(x) или функция распределения F(x) .

Задана плотность распределения f(x):

Задана функция распределения F(x):

Непрерывная случайна величина задана плотностью вероятностей
(закон распределения Релея – применяется в радиотехнике). Найти M(x) , D(x) .

Случайную величину X называют непрерывной , если ее функция распределения F(X)=P(X < x) непрерывна и имеет производную.
Функция распределения непрерывной случайной величины применяется для вычисления вероятностей попадания случайной величины в заданный промежуток:
P(α < X < β)=F(β) - F(α)
причем для непрерывной случайной величины не имеет значения, включаются в этот промежуток его границы или нет:
P(α < X < β) = P(α ≤ X < β) = P(α ≤ X ≤ β)
Плотностью распределения непрерывной случайной величины называется функция
f(x)=F’(x) , производная от функции распределения.

Свойства плотности распределения

1. Плотность распределения случайной величины неотрицательна (f(x) ≥ 0) при всех значениях x.
2. Условие нормировки:

Геометрический смысл условия нормировки: площадь под кривой плотности распределения равна единице.
3. Вероятность попадания случайной величины X в промежуток от α до β может быть вычислена по формуле

Геометрически вероятность попадания непрерывной случайной величины X в промежуток (α, β) равна площади криволинейной трапеции под кривой плотности распределения, опирающейся на этот промежуток.
4. Функция распределения выражается через плотность следующим образом:

Значение плотности распределения в точке x не равно вероятности принять это значение, для непрерывной случайной величины речь может идти только о вероятности попадания в заданный интервал. Пусть (рис. 5.4). Найти аналитическое выражение для плотности вероятности f (x ) на всей числовой оси.

Рис. 5.4 Рис. 5.5

5.16. Случайная величина Х распределена по закону "прямоугольного треугольника" в интервале (0;4) (рис. 5.5). Найти аналитическое выражение для плотности вероятности f (x ) на всей числовой оси.

Ответы

P (-1/2<X <1/2)=2/3.

P (2π /9<Х < π /2)=1/2.

5.3. а) с =1/6, б) М (Х )=3 , в) D (X )=26/81.

5.4. а) с =3/2, б) М (Х )=3/5, в) D (X )=12/175.

б) M (X )= 3 , D (X )= 2/9, σ(Х )= /3.

б) M (X )=2 , D (X )= 3 , σ(Х )= 1,893.

5.7. а) с = ; б)

5.8. а) с =1/2; б)

5.9. а)1/4; б) 0.

5.10. а)3/5; б) 1.

5.11. а) с = 2; б) М (Х )= 2; в) 1-ln 2 2 ≈ 0,5185.

5.12. а) М (Х )= π /2 ; б) 1/2

Непрерывные случайные величины - это величины, возможные значения которых образуют некоторый конечный или бесконечный интервал.

Интегральная функция распределения есть закон распределения случайной величины, с помощью которого можно задавать как дискретную, так и непрерывную случайную величину.

Интегральной функцией распределения называют функцию F(x), определяющую для каждого значения x вероятность того, что случайная величина X примет значение меньшее х, т.е. .

Геометрически это означает: F(x) есть вероятность того, что случайная величина Х примет значение, которое изображается на числовой оси точкой, лежащей левее точки х.

Случайная величина называется непрерывной, если ее интегральная функция F(X) непрерывно дифференцируема.

Свойства интегральной функции.

1 0 . Значения интегральной функции принадлежат отрезку от 0 до1, то есть .

2 0 . Интегральная функция есть функция неубывающая, то есть, если , то .

Следствия:

1. Вероятность того, что СВ примет значение, заключенное в интервале (а;в) равна приращению интегральной функции на этом интервале:

2. Вероятность того, что НСВ примет одно конкретное значение равна 0.

3. Если возможные значения НСВ расположены на всей числовой прямой, то справедливы следующие предельные отношения:

и

График интегральной функции.

График интегральной функции строят, исходя из ее свойств. По первому свойству , график расположен между прямыми y=0 и y=1. из второго свойства следует, что - функция возрастающая, а значит ее график на промежутке (а,в) поднимается вправо и вверх. По 3 0 свойству при , а при (рис.5).

Рисунок 5. График интегральной функции.

Пример 31. ДСВ задана законом распределения

0,2 0,5 0,3

Найти интегральную функцию распределения и построить ее график.

1. Если , то по 3 0 .

2. Если , .

3. Если , .

4. Если , то по 3 0 .

Построим график интегральной функции ДСВ(Ч) (рис.6).

Рисунок 6. График интегральной функции для дискретной случайной величины.

Дифференциальная функция распределения НСВ.

Существует еще один способ задания НСВ, используя дифференциальную функцию распределения.

Дифференциальной функцией распределения называется функция равная первой производной интегральной функции, то есть .

Дифференциальную функцию распределения по-другому называют плотностью распределения вероятностей.

Теорема 17. Вероятность того, что НСВ Х примет значение, принадлежащее промежутку (а,в), равна определенному интегралу от дифференциальной функции, взятому в пределах от а до в.

Пример 32. НСВ задана интегральной функцией распределения

Найти дифференциальную функцию распределения и вероятность попадания НСВ в промежуток .

Решение.

Свойства дифференциальной функции распределения.

1 0 . Дифференциальная функция есть функция неотрицательная: .

2 0 . (Условие нормировки.) Несобственный интеграл от дифференциальной функции в пределах от -∞ до +∞ равен 1, то есть:

В частности, если все возможные значения НСВ принадлежат интервалу (а, в), то

Пример 33.

Найти значение параметра а.

Заметим, что зная дифференциальную функцию распределения, можно найти интегральную функцию по формуле:

.

Пример 34. НСВ задана дифференциальной функцией распределения:

найти интегральную функцию распределения.

Решение.

1.

3.

Числовые характеристики НСВ.