Оператор гамильтона дифференциальные операции второго порядка оператор лапласа понятие о криволинейных координатах сферические координаты. Оператор гамильтона дифференциальные операции второго порядка оператор лапласа понятие о криволинейных координатах с

Оператор Лапласа

Оператор Лапласа определяется выражением

и в декартовой системе координат описывается формулой

Найдем выражение для оператора Лапласа в криволинейной ортогональной системе координат. Для этого запишем градиент и дивергенцию в криволинейной системе координат

Подставляя эти выражения в оператор Лапласа, получим

Пример 1. Найти выражение для оператора Лапласа в цилиндрической системе координат.

Замечание 1. Оператор Лапласа в полярной системе координат определяется формулой

Пример 2. Найти выражение для оператора Лапласа в сферической системе координат.

Решение. Подставляя значения коэффициентов Ламе, получим

Уравнение Лапласа

Уравнением Лапласа называют уравнение вида.

Это уравнение называют уравнением эллиптического типа. Оно часто встречается в задачах, связанных с определением потенциала различных стационарных полей. В частности, задача определения поля температур, электрического потенциала, упругих напряжений и деформаций связана с решением уравнения Лапласа. Отметим, что в математической физике изучают также уравнения гиперболического и параболического типа.

Существует много различных методов решения уравнений эллиптического типа. Среди них можно выделить метод разделения переменных, метод функции источника, теорию потенциала, метод аналитических функций и много других. Рассмотрим несколько простейших задач, не связанных с использованием специальных методов.

Цилиндрическая симметрия. Найдем решение уравнения Лапласа для функции, обладающей цилиндрической симметрией, т.е. не зависящей от полярного угла и переменной z. В этом случае уравнение Лапласа, записанное в цилиндрической системе координат, имеет вид

Частные производные здесь заменены полными. Из этого уравнения следует

где и - произвольные постоянные, которые можно найти из граничных условий.

Сферическая симметрия. Найдем решение уравнения Лапласа для функции, обладающей сферической симметрией, т.е. не зависящей от углов и. В этом случае уравнение Лапласа, записанное в сферической системе координат, имеет вид

Нетрудно найти решение этого уравнения

Решение уравнения Пуассона рассмотрим на конкретных примерах.

Пример 1. Найти решение уравнения Пуассона внутри круга радиуса, если

Решение. Искомая функция обладает цилиндрической симметрией, поэтому запишем уравнение Пуассона в цилиндрической системе координат в виде

Решим это уравнение

градиент криволинейный ламе дифференциальный

Постоянные и найдем из граничного условия и условия ограниченности функции. Учитывая, что, получим. Из условия получим

Следовательно, имеем окончательный ответ

лапласиан,- дифференциальный оператор определяемый формулой

(здесь - координаты в ), а также некоторые его обобщения. Л. о. (1) является простейшим эллиптич. дифференциальным оператором 2-го порядка. Л. о. играет важную роль в математич. анализе, математич. физике и геометрии (см., напр., Лапласа уравнение, Лапласа - Бельтрами уравнение, Гармоническая функция, Гармоническая форма ).

Пусть Месть n-мерное риманово пространство с метрикой

пусть - матрица, обратная к матрице Тогда Л. о. (или оператор Лапласа - Бельтрами) римановой метрики (2) на Мимеет вид

где - локальные координаты на М. Оператор (1) отличается знаком от Л. о. стандартной евклидовой метрики

Обобщением оператора (3) является Л. о. на дифференциальных формах. Именно, в пространстве всех внешних дифференциальных форм на МЛ. о. имеет вид

где d - оператор внешнего дифференцирования формы, d* - формально сопряженный к dоператор, определяемый с помощью следующего произведения на гладких финитных формах:

где * - оператор Ходжа, порожденный метрикой (2) и переводящий р-формы в ( п-р )-формы. В формуле (5) формы a и b считаются действительными, на комплексных формах нужно использовать эрмитово продолжение скалярного произведения (5). Сужение оператора (4) на О-формы (т. е. функции) задается формулой (3). На р-формах при произвольном целом Л. о. в локальных координатах записывается в виде


Здесь - ковариантные производные по

Тензор кривизны, - тензор Риччи. Пусть дан произвольный эллиптич. комплекс

где Е р - действительные или комплексные расслоения на многообразии М, Г ( Е р ) - пространства их гладких сечений. Введя в каждом расслоении Е р эрмитову метрику, а также задав произвольным образом элемент объема на М, можно определить эрмитово скалярное произведение в пространствах гладких финитных сечений расслоений Е р. Тогда определены операторы d*, формально сопряженные к операторам d. По формуле (3) строится Л. о. на каждом пространстве Г( Е р ). Если в качестве комплекса (6) взять комплекс де Рама, то при естественном выборе метрики в р-формах и элемента объема, порожденных метрикой (2), получается в качестве Л. о. комплекса де Рама описанный выше Л. о. на формах.

На комплексном многообразии Мнаряду с комплексом де Рама имеются эллиптич. комплексы


где - пространство гладких форм типа ( р, q ).на М. Вводя эрмитову структуру в касательном расслоении на М, можно построить Л. о. (4) комплекса де Рама и Л. о. комплексов (7), (8):

Каждый из этих операторов переводит в себя пространство Если М - кэлерово многообразие, а эрмитова структура на Миндуцирована кэлеровой метрикой, то

Важным фактом, определяющим роль Л. о. эллиптич. комплекса, является существование в случае компактного многообразия Мортогонального разложения Ходжа:

В этом разложении где - Л. о. комплекса (6), так что - пространство "гармонических" сечений расслоения Е р (в случае комплекса де Рама - это пространство всех гармонических форм степени р). Прямая сумма первых двух слагаемых в правой части формулы (9) равна а прямая сумма двух последних слагаемых совпадает с В частности, разложение (9) задает изоморфизм пространства когомологий комплекса (6) в члене и пространства гармонич. сечений

Лит. : Рам Ж. д е, Дифференцируемые многообразия, пер. с франц., М., 1956; Чжэнь Шэн-шэнь, Комплексные многообразия, пер. с англ., М., 1961; Уэллс Р., Дифференциальное исчисление на комплексных многообразиях, пер. с англ., М., 1976. М. А. Шубин.

  • - интеграл движения точки постоянной массы mв поле потенциала Ньютона - Кулона L= - момент импульса - определяет плоскость орбиты, а совместно с интегралом энергии - ее конфигурацию...

    Математическая энциклопедия

  • - 1) Интеграл вида осуществляющий интегральное Лапласа преобразование функции f.действительного переменного t, в функцию F.комплексного переменного р. Был рассмотрен П. Лапласом в кон. 18- нач. 19 вв....

    Математическая энциклопедия

  • - асимптотических оценок - метод вычисления асимптотики при l>...

    Математическая энциклопедия

  • - последовательность конгруэнции в трехмерном проективном пространстве, в к-рой каждые две соседние конгруэнции образованы касательными к двум семействам линий сопряженной сети одной поверхности...

    Математическая энциклопедия

  • - трансформация Лапласа, - в широком смысле - интеграл Лапласа вида где интегрирование производится по нек-рому контуру Lв плоскости комплексного переменного z, ставящий в соответствие функции f...

    Математическая энциклопедия

  • - установленная П. Лапласом зависимость капиллярного давления Рq от ср. кривизны поверхности е раздела граничащих фаз и поверхностного натяжения q: Рq = еq....
  • - линейный дифференц. оператор, к-рый ф-ции ф ставит в соответствие ф-цию Встречается во мн. задачах матем. физики. Ур-ние дельта ф = 0 наз. Лапласа уравнением...

    Естествознание. Энциклопедический словарь

  • - один из осн. законов капиллярных явлений. Согласно Л. з., разность р0 гидростатич...
  • - линейный дифференц...

    Большой энциклопедический политехнический словарь

  • - Приморской области, Южно-Уссурийского края, на побережье Сев.-Японского моря, между мысами Авсеенко и Дурынина, севернее бухты Шхадгоу...

    Энциклопедический словарь Брокгауза и Евфрона

  • - геодезический азимут А направления на наблюдаемую точку, полученный по его астрономическому азимуту α, исправленному с учётом влияния отклонения отвеса в пункте наблюдения...
  • - космогоническая гипотеза об образовании Солнечной системы - Солнца, планет и их спутников из вращающейся и сжимающейся газовой туманности, высказанная П. Лапласом в 1796 в популярной книге «Изложение...

    Большая Советская энциклопедия

  • - зависимость перепада гидростатического давления Δp на поверхности раздела двух фаз от межфазного поверхностного натяжения σ и средней кривизны поверхности ε в рассматриваемой точке: Δр=р1- р2= εσ, где p1 -...

    Большая Советская энциклопедия

  • - лапласиан, дельта-оператор, Δ-оператор, линейный дифференциальный Оператор, который функции φ от n переменных x1, x2,.....

    Большая Советская энциклопедия

  • - установленная П. Лапласом зависимость????? - капиллярного давления?? от средней кривизны E поверхности раздела граничащих фаз и поверхностного натяжения?...
  • - ЛАПЛАСА оператор - линейный дифференциальный оператор, который функции? ставит в соответствие функциюВстречается во многих задачах математической физики. Уравнение???0 называется Лапласа уравнением...

    Большой энциклопедический словарь

"ЛАПЛАСА ОПЕРАТОР" в книгах

Отставка Лапласа

Из книги Лаплас автора

НАСЛЕДИЕ ЛАПЛАСА

Из книги Лаплас автора Воронцов-Вельяминов Борис Николаевич

Сахар Лапласа

Из книги Истории давние и недавние автора Арнольд Владимир Игоревич

Сахар Лапласа История Ф. Араго: в юности попал в плен к пиратам, потом выкуплен (каким-то англичанином в Египте?), вернувшись, стал активнейшим учёным, работал с Ампером и в оптике. Его выдвинули в Академию наук. Кандидат (до сих пор) должен посетить всех голосующих и

Принцип Лапласа

Из книги Как далеко до завтрашнего дня автора Моисеев Никита Николаевич

Принцип Лапласа В конечном счете, я не стал верующим, но и не превратился в атеиста. Мне казалось, что любые категоричные утверждения в этой сфере, лежащей на границе разума и эмоций – неуместны. Недоказуемо всё. Никакая логика не поможет в решении этого вечного вопроса.

Демон Лапласа

Из книги Больше, чем вы знаете. Необычный взгляд на мир финансов автора Мобуссин Майкл

Демон Лапласа 200 лет назад в науке господствовал детерминизм. Воодушевленные открытиями Ньютона, ученые рассматривали вселенную как часовой механизм. Французский математик Пьер Симон Лаплас хорошо выразил суть детерминизма в своем знаменитом труде «Опыт философии

43. Демон, Лапласа

Из книги Философ на краю Вселенной. НФ–философия, или Голливуд идет на помощь: философские проблемы в научно–фантастических фильмах автора Роулендс Марк

43. Демон, Лапласа Гипотетическое сверхсущество, обладающее исчерпывающими знаниями о состоянии Вселенной и способное на основе этого точно предсказывать будущие изменения. Вспомните хотя бы пролов из «Особого мнения»: если бы они могли видеть не только грядущие

Лапласа азимут

БСЭ

Лапласа гипотеза

Из книги Большая Советская Энциклопедия (ЛА) автора БСЭ автора Мейерс Скотт

Правило 52: Если вы написали оператор new с размещением, напишите и соответствующий оператор delete Операторы new и delete с размещением встречаются в C++ не слишком часто, поэтому в том, что вы с ними не знакомы, нет ничего страшного. Вспомните (правила 16 и 17), что когда вы пишете такое

1. Оператор Select – базовый оператор языка структурированных запросов

Из книги Базы данных: конспект лекций автора Автор неизвестен

1. Оператор Select – базовый оператор языка структурированных запросов Центральное место в языке структурированных запросов SQL занимает оператор Select, с помощью которого реализуется самая востребованная операция при работе с базами данных – запросы.Оператор Select

15.8.2. Оператор размещения new() и оператор delete()

Из книги C++ для начинающих автора Липпман Стенли

15.8.2. Оператор размещения new() и оператор delete() Оператор-член new() может быть перегружен при условии, что все объявления имеют разные списки параметров. Первый параметр должен иметь тип size_t:class Screen {public:void *operator new(size_t);void *operator new(size_t, Screen *);// ...};Остальные параметры

Оно является частным случаем уравнения Гельмгольца. Может рассматриваться в трехмерном (1), двумерном (2), одномерном и n – мерном пространствах:

Оператор называется оператором Лапласа (Оператор Лапласа эквивалентен последовательному взятию операций градиента и дивергенции.).

Решение уравнения Лапласа

Решениями уравнения Лапласа являются гармонические функции.

Уравнение Лапласа относится к эллиптическим уравнениям. Неоднородное уравнение Лапласа становится уравнением Пуассона.

Каждое решение уравнения Лапласа в ограниченной области G однозначно выделяется краевыми условиями, накладываемыми на поведение решения (или его производных) на границе области G. Если решение отыскивается во всём пространстве , краевые условия сводятся к предписанию некоторой асимптотики для f при . Задача о нахождении таких решений называется краевой задачей. Чаще всего встречаются задача Дирихле, когда на границе задано значение самой функции f, и задача Немана, когда задано значение f по нормали к границе.

Уравнение Лапласа в сферических, полярных и цилиндрических координатах

Уравнение Лапласа можно записать не только в декартовых координатах.

В сферических координатах ( уравнение Лапласа имеет следующий вид:

В полярных координатах ( система координат уравнение имеет вид:

В цилиндрических координатах ( уравнение имеет вид:

К уравнению Лапласа приводят многие задачи физики и механики, в которых физическая величина является функцией только координат точки. Так, уравнение Лапласа описывает потенциал в области, не содержащей тяготеющих масс, потенциал электростатического поля – в области, не содержащей зарядов, температуру при стационарных процессах и т. д. Большое количество инженерных задач, связанных, в частности, с медленным стационарным обтеканием корпуса корабля, стационарной фильтрацией подземных вод, возникновением поля вокруг электромагнита, а также стационарного электрического поля в окрестности фарфорового изолятора или заглубленного в землю электрического кабеля переменного поперечного сечения, сводится к решению трехмерных уравнений Лапласа или Пуассона. Большое значение оператор Лапласа играет в квантовой механике.

Примеры решения задач

ПРИМЕР 1

Задание Найдите поле между двумя коаксиальными цилиндрами с радиусами и , разность потенциалов между которыми равна

Решение Запишем уравнение Лапласа в цилиндрических координатах с учетом аксиальной симметрии:

Оно имеет решение +B. Выберем нулевой потенциал на наружном цилиндре, найдем, получим:

Следовательно

Получим:

В результате имеем:

Ответ Поле между двумя коаксиальными цилиндрами задается функцией

ПРИМЕР 2

Задание Исследовать устойчивость равновесия положительно заряженной частицы в электрическом поле (теорема Ирншоу).
Решение Поместим начало координат в положение равновесия частицы. При этом можно считать, что потенциал представляется в виде:

Материал из Википедии - свободной энциклопедии

Оператор Лапласа эквивалентен последовательному взятию операций градиента и дивергенции : \Delta=\operatorname{div}\,\operatorname{grad}, таким образом, значение оператора Лапласа в точке может быть истолковано как плотность источников (стоков) потенциального векторного поля \ \operatorname{grad}F в этой точке. В декартовой системе координат оператор Лапласа часто обозначается следующим образом \Delta=\nabla\cdot\nabla=\nabla^2 , то есть в виде скалярного произведения оператора набла на себя. Оператор Лапласа симметричен .

Другое определение оператора Лапласа

Оператор Лапласа является естественным обобщением на функции нескольких переменных обычной второй производной функции одной переменной. В самом деле, если функция \ f (x) имеет в окрестности точки \ x_0 непрерывную вторую производную \ f(x), то, как это следует из формулы Тейлора

\ f(x_0+r)=f(x_0)+rf"(x_0)+\frac{r^2}{2}f(x_0)+o(r^2), при r\to 0,, \ f(x_0-r)=f(x_0)-rf"(x_0)+\frac{r^2}{2}f(x_0)+o(r^2), при r\to 0,

вторая производная есть предел

\ f(x_0)=\lim\limits_{r \to 0} \frac{2}{r^2} \left\{ \frac{f(x_0+r)+f(x_0-r)}{2}-f(x_0) \right\}.

Если, переходя к функции \ F от \ k переменных, поступить таким же образом, то есть для заданной точки M_0(x_1^0,x_2^0, ... ,x_k^0) рассматривать её \ k -мерную шаровую окрестность \ Q_r радиуса \ r и разность между средним арифметическим

\ \frac{1}{\sigma(S_r)}\int\limits_{S_r}Fd\sigma

функции \ F на границе \ S_r такой окрестности с площадью границы \ \sigma(S_r) и значением \ F(M_0) в центре этой окрестности \ M_0, то в случае непрерывности вторых частных производных функции \ F в окрестности точки \ M_0 значение лапласиана \ \Delta F в этой точке есть предел

\ \Delta F(M_0)=\lim\limits_{r \to 0} \frac{2k}{r^2} \left\{\frac{1}{\sigma(S_r)}\int\limits_{S_r}F(M)d\sigma -F(M_0) \right\}.

Одновременно с предыдущим представлением для оператора Лапласа функции \ F, имеющей непрерывные вторые производные, справедлива формула

\ \Delta F(M_0)=\lim\limits_{r \to 0} \frac{2(k+2)}{r^2} \left\{\frac{1}{\omega(Q_r)}\int\limits_{Q_r}F(M)d\omega -F(M_0) \right\}, где \ \omega(Q_r) - объём окрестности \ Q_r.

Эта формула выражает непосредственную связь лапласиана функции с её объёмным средним в окрестности данной точки.

Доказательство этих формул можно найти, например, в .

Вышеизложенные пределы, во всех случаях, когда они существуют, могут служить определением оператора Лапласа функции \ F. Такое определение предпочтительнее обычного определения лапласиана, предполагающего существование вторых производных рассматриваемых функций, и совпадает с обычным определением в случае непрерывности этих производных.

Выражения для оператора Лапласа в различных криволинейных системах координат

В произвольных ортогональных криволинейных координатах в трёхмерном пространстве q_1,\ q_2,\ q_3:

\Delta f (q_1,\ q_2,\ q_3) = \operatorname{div}\,\operatorname{grad}\,f(q_1,\ q_2,\ q_3) = =\frac{1}{H_1H_2H_3}\left[ \frac{\partial}{\partial q_1}\left(\frac{H_2H_3}{H_1}\frac{\partial f}{\partial q_1} \right) + \frac{\partial}{\partial q_2}\left(\frac{H_1H_3}{H_2}\frac{\partial f}{\partial q_2} \right) + \frac{\partial}{\partial q_3}\left(\frac{H_1H_2}{H_3}\frac{\partial f}{\partial q_3} \right)\right], где H_i\ - коэффициенты Ламе .

Цилиндрические координаты

В цилиндрических координатах вне прямой \ r=0:

\Delta f

= {1 \over r} {\partial \over \partial r}

\left(r {\partial f \over \partial r} \right)

+ {\partial^2f \over \partial z^2} + {1 \over r^2} {\partial^2 f \over \partial \varphi^2}

Сферические координаты

В сферических координатах вне начала отсчёта (в трёхмерном пространстве):

\Delta f

= {1 \over r^2} {\partial \over \partial r}

\left(r^2 {\partial f \over \partial r} \right)

+ {1 \over r^2\sin^2 \theta} {\partial^2 f \over \partial \varphi^2}

\Delta f

= {1 \over r} {\partial^2 \over \partial r^2}

\left(rf \right)

+ {1 \over r^2 \sin \theta} {\partial \over \partial \theta}

\left(\sin \theta {\partial f \over \partial \theta} \right)

+ {1 \over r^2 \sin^2 \theta} {\partial^2 f \over \partial \varphi^2}.

В случае если \ f=f(r) в n -мерном пространстве:

\Delta f = {d^2 f\over dr^2} + {n-1 \over r } {df\over dr}.

Параболические координаты

В параболических координатах (в трёхмерном пространстве) вне начала отсчёта:

\Delta f= \frac{1}{\sigma^{2} + \tau^{2}} \left[ \frac{1}{\sigma} \frac{\partial }{\partial \sigma} \left(\sigma \frac{\partial f}{\partial \sigma} \right) + \frac{1}{\tau} \frac{\partial }{\partial \tau} \left(\tau \frac{\partial f}{\partial \tau} \right)\right] + \frac{1}{\sigma^2\tau^2}\frac{\partial^2 f}{\partial \varphi^2}

Цилиндрические параболические координаты

В координатах параболического цилиндра вне начала отсчёта:

\Delta F(u,v,z) = \frac{1}{c^2(u^2+v^2)} \left[ \frac{\partial^2 F }{\partial u^2}+ \frac{\partial^2 F }{\partial v^2}\right] + \frac{\partial^2 F }{\partial z^2}.

Общие криволинейные координаты и римановы пространства

Пусть на гладком многообразии X задана локальная система координат и g_{ij} - риманов метрический тензор на X, то есть метрика имеет вид

ds^2 =\sum^n_{i,j=1}g_{ij} dx^idx^j .

Обозначим через g^{ij} элементы матрицы (g_{ij})^{-1} и

g = \operatorname{det} g_{ij} = (\operatorname{det} g^{ij})^{-1}.

Дивергенция векторного поля F, заданного координатами F^i (и представляющего дифференциальный оператор первого порядка \sum_i F^i\frac{\partial}{\partial x^i}) на многообразии X вычисляется по формуле

\operatorname{div} F = \frac{1}{\sqrt{g}}\sum^n_{i=1}\frac{\partial}{\partial x^i}(\sqrt{g}F^i),

а компоненты градиента функции f - по формуле

(\nabla f)^j =\sum^n_{i=1}g^{ij} \frac{\partial f}{\partial x^i}.

Оператор Лапласа - Бельтрами на X:

\Delta f = \operatorname{div} (\nabla f)= \frac{1}{\sqrt{g}}\sum^n_{i=1}\frac{\partial}{\partial x^i}\Big(\sqrt{g} \sum^n_{k=1}g^{ik} \frac{\partial f}{\partial x^k}\Big).

Значение \Delta f является скаляром, то есть не изменяется при преобразовании координат.

Применение

С помощью данного оператора удобно записывать уравнения Лапласа , Пуассона и волновое уравнение . В физике оператор Лапласа применим в электростатике и электродинамике, квантовой механике , во многих уравнениях физики сплошных сред , а также при изучении равновесия мембран, плёнок или поверхностей раздела фаз с поверхностным натяжением (см. Лапласово давление), в стационарных задачах диффузии и теплопроводности, которые сводятся, в непрерывном пределе, к обычным уравнениям Лапласа или Пуассона или к некоторым их обобщениям.

Вариации и обобщения

  • Оператор Д’Аламбера - обобщение оператора Лапласа для гиперболических уравнений . Включает в себя вторую производную по времени.
  • Векторный оператор Лапласа - обобщение оператора Лапласа на случай векторного аргумента.

См. также

Напишите отзыв о статье "Оператор Лапласа"

Литература

Ссылки

Отрывок, характеризующий Оператор Лапласа

Княжна Марья, сидя в гостиной и слушая эти толки и пересуды стариков, ничего не понимала из того, что она слышала; она думала только о том, не замечают ли все гости враждебных отношений ее отца к ней. Она даже не заметила особенного внимания и любезностей, которые ей во всё время этого обеда оказывал Друбецкой, уже третий раз бывший в их доме.
Княжна Марья с рассеянным, вопросительным взглядом обратилась к Пьеру, который последний из гостей, с шляпой в руке и с улыбкой на лице, подошел к ней после того, как князь вышел, и они одни оставались в гостиной.
– Можно еще посидеть? – сказал он, своим толстым телом валясь в кресло подле княжны Марьи.
– Ах да, – сказала она. «Вы ничего не заметили?» сказал ее взгляд.
Пьер находился в приятном, после обеденном состоянии духа. Он глядел перед собою и тихо улыбался.
– Давно вы знаете этого молодого человека, княжна? – сказал он.
– Какого?
– Друбецкого?
– Нет, недавно…
– Что он вам нравится?
– Да, он приятный молодой человек… Отчего вы меня это спрашиваете? – сказала княжна Марья, продолжая думать о своем утреннем разговоре с отцом.
– Оттого, что я сделал наблюдение, – молодой человек обыкновенно из Петербурга приезжает в Москву в отпуск только с целью жениться на богатой невесте.
– Вы сделали это наблюденье! – сказала княжна Марья.
– Да, – продолжал Пьер с улыбкой, – и этот молодой человек теперь себя так держит, что, где есть богатые невесты, – там и он. Я как по книге читаю в нем. Он теперь в нерешительности, кого ему атаковать: вас или mademoiselle Жюли Карагин. Il est tres assidu aupres d"elle. [Он очень к ней внимателен.]
– Он ездит к ним?
– Да, очень часто. И знаете вы новую манеру ухаживать? – с веселой улыбкой сказал Пьер, видимо находясь в том веселом духе добродушной насмешки, за который он так часто в дневнике упрекал себя.
– Нет, – сказала княжна Марья.
– Теперь чтобы понравиться московским девицам – il faut etre melancolique. Et il est tres melancolique aupres de m lle Карагин, [надо быть меланхоличным. И он очень меланхоличен с m elle Карагин,] – сказал Пьер.
– Vraiment? [Право?] – сказала княжна Марья, глядя в доброе лицо Пьера и не переставая думать о своем горе. – «Мне бы легче было, думала она, ежели бы я решилась поверить кому нибудь всё, что я чувствую. И я бы желала именно Пьеру сказать всё. Он так добр и благороден. Мне бы легче стало. Он мне подал бы совет!»
– Пошли бы вы за него замуж? – спросил Пьер.
– Ах, Боже мой, граф, есть такие минуты, что я пошла бы за всякого, – вдруг неожиданно для самой себя, со слезами в голосе, сказала княжна Марья. – Ах, как тяжело бывает любить человека близкого и чувствовать, что… ничего (продолжала она дрожащим голосом), не можешь для него сделать кроме горя, когда знаешь, что не можешь этого переменить. Тогда одно – уйти, а куда мне уйти?…
– Что вы, что с вами, княжна?
Но княжна, не договорив, заплакала.
– Я не знаю, что со мной нынче. Не слушайте меня, забудьте, что я вам сказала.
Вся веселость Пьера исчезла. Он озабоченно расспрашивал княжну, просил ее высказать всё, поверить ему свое горе; но она только повторила, что просит его забыть то, что она сказала, что она не помнит, что она сказала, и что у нее нет горя, кроме того, которое он знает – горя о том, что женитьба князя Андрея угрожает поссорить отца с сыном.
– Слышали ли вы про Ростовых? – спросила она, чтобы переменить разговор. – Мне говорили, что они скоро будут. Andre я тоже жду каждый день. Я бы желала, чтоб они увиделись здесь.
– А как он смотрит теперь на это дело? – спросил Пьер, под он разумея старого князя. Княжна Марья покачала головой.
– Но что же делать? До года остается только несколько месяцев. И это не может быть. Я бы только желала избавить брата от первых минут. Я желала бы, чтобы они скорее приехали. Я надеюсь сойтись с нею. Вы их давно знаете, – сказала княжна Марья, – скажите мне, положа руку на сердце, всю истинную правду, что это за девушка и как вы находите ее? Но всю правду; потому что, вы понимаете, Андрей так много рискует, делая это против воли отца, что я бы желала знать…
Неясный инстинкт сказал Пьеру, что в этих оговорках и повторяемых просьбах сказать всю правду, выражалось недоброжелательство княжны Марьи к своей будущей невестке, что ей хотелось, чтобы Пьер не одобрил выбора князя Андрея; но Пьер сказал то, что он скорее чувствовал, чем думал.
– Я не знаю, как отвечать на ваш вопрос, – сказал он, покраснев, сам не зная от чего. – Я решительно не знаю, что это за девушка; я никак не могу анализировать ее. Она обворожительна. А отчего, я не знаю: вот всё, что можно про нее сказать. – Княжна Марья вздохнула и выражение ее лица сказало: «Да, я этого ожидала и боялась».
– Умна она? – спросила княжна Марья. Пьер задумался.
– Я думаю нет, – сказал он, – а впрочем да. Она не удостоивает быть умной… Да нет, она обворожительна, и больше ничего. – Княжна Марья опять неодобрительно покачала головой.
– Ах, я так желаю любить ее! Вы ей это скажите, ежели увидите ее прежде меня.
– Я слышал, что они на днях будут, – сказал Пьер.
Княжна Марья сообщила Пьеру свой план о том, как она, только что приедут Ростовы, сблизится с будущей невесткой и постарается приучить к ней старого князя.

Женитьба на богатой невесте в Петербурге не удалась Борису и он с этой же целью приехал в Москву. В Москве Борис находился в нерешительности между двумя самыми богатыми невестами – Жюли и княжной Марьей. Хотя княжна Марья, несмотря на свою некрасивость, и казалась ему привлекательнее Жюли, ему почему то неловко было ухаживать за Болконской. В последнее свое свиданье с ней, в именины старого князя, на все его попытки заговорить с ней о чувствах, она отвечала ему невпопад и очевидно не слушала его.
Жюли, напротив, хотя и особенным, одной ей свойственным способом, но охотно принимала его ухаживанье.
Жюли было 27 лет. После смерти своих братьев, она стала очень богата. Она была теперь совершенно некрасива; но думала, что она не только так же хороша, но еще гораздо больше привлекательна, чем была прежде. В этом заблуждении поддерживало ее то, что во первых она стала очень богатой невестой, а во вторых то, что чем старее она становилась, тем она была безопаснее для мужчин, тем свободнее было мужчинам обращаться с нею и, не принимая на себя никаких обязательств, пользоваться ее ужинами, вечерами и оживленным обществом, собиравшимся у нее. Мужчина, который десять лет назад побоялся бы ездить каждый день в дом, где была 17 ти летняя барышня, чтобы не компрометировать ее и не связать себя, теперь ездил к ней смело каждый день и обращался с ней не как с барышней невестой, а как с знакомой, не имеющей пола.
Дом Карагиных был в эту зиму в Москве самым приятным и гостеприимным домом. Кроме званых вечеров и обедов, каждый день у Карагиных собиралось большое общество, в особенности мужчин, ужинающих в 12 м часу ночи и засиживающихся до 3 го часу. Не было бала, гулянья, театра, который бы пропускала Жюли. Туалеты ее были всегда самые модные. Но, несмотря на это, Жюли казалась разочарована во всем, говорила всякому, что она не верит ни в дружбу, ни в любовь, ни в какие радости жизни, и ожидает успокоения только там. Она усвоила себе тон девушки, понесшей великое разочарованье, девушки, как будто потерявшей любимого человека или жестоко обманутой им. Хотя ничего подобного с ней не случилось, на нее смотрели, как на такую, и сама она даже верила, что она много пострадала в жизни. Эта меланхолия, не мешавшая ей веселиться, не мешала бывавшим у нее молодым людям приятно проводить время. Каждый гость, приезжая к ним, отдавал свой долг меланхолическому настроению хозяйки и потом занимался и светскими разговорами, и танцами, и умственными играми, и турнирами буриме, которые были в моде у Карагиных. Только некоторые молодые люди, в числе которых был и Борис, более углублялись в меланхолическое настроение Жюли, и с этими молодыми людьми она имела более продолжительные и уединенные разговоры о тщете всего мирского, и им открывала свои альбомы, исписанные грустными изображениями, изречениями и стихами.

Любая часть системы управления, будь то регулятор, объект или датчик, имеет вход и выход. С помощью входов и выходов они взаимодействуют с другими элементами системы и с внешней средой. При воздействии входного сигнала на элемент системы, в этом элементе происходят какие-то внутренние изменения состояния, которые приводят к изменению выходного сигнала. То есть элемент системы представляет собой некоторую функцию зависимости y от x. Это можно изобразить на рисунке 1.



Рисунок 1 – элемент системы управления с входом и выходом


Определение функции F(x) и есть, по сути, основная задача, решаемая в рамках теории автоматического управления. Знание F(x) объекта поможет составить правильный алгоритм управления им, F(x) датчика определит характер обратной связи, а синтез F(x) сделает систему по-настоящему работоспособной. Саму F также иногда называют оператором, поскольку она оперирует входным сигналом.


Базовыми операциями в ТАУ являются интегрирование и дифференцирование. Допустим, сигнал нарастает в течение некоторого времени, что зачастую очень характерно для сигналов в системах управления, тогда для описания этого процесса его следует «собрать» интегралом во всем временном промежутке:



Дифференцирование также чрезвычайно полезно в теории автоматического управления. Оператор дифференцирования в противовес оператору интегрирования берет производную от входного сигнала, то есть:



Здесь зарождается очень важное понятие в ТАУ – оператор Лапласа p, который призван заменить запись d/dt, иначе говоря



Также в некоторых источниках этот оператор представляется произведением мнимой единицы на угловую частоту, то есть p=jω. Но мы пока не будем трогать частотный диапазон, ибо это обширная тема и просто запомним два простейших правила:



Как же выглядит интегрирование и дифференцирование сигнала? Интегрирование сигнала скачкообразной формы показано на рисунке 2а. Здесь все просто, сигнал будет инкрементироваться на каждом шаге интегрирования, пока не достигнет за время t1 изначально заданного значения. А что если продифференцировать такой сигнал? Ни в коем случае! Это угроза безопасности Вселенной, такой сигнал пробьет небесный свод и устремится в бесконечность к звездам (рисунок 2б)! Короче говоря, математика гласит, что производная мгновенно измененного сигнала равна бесконечности, а поскольку бесконечность является идеальной и недостижимой величиной, то в реальном мире такая операция не имеет смысла. Иначе говорят, что такая операция физически не реализуема. В общем, p в чистом виде не применяется, а используется только в составе более сложных выражений, где эта p будет каким-то образом компенсирована.



Рисунок 2 – интегрирование и дифференцирование сигнала


Теперь, когда мы знаем про соотношение выходного сигнала к входному и про оператор Лапласа, мы можем перейти к такому понятию как передаточная функция. По сути, передаточная функция, записываемая как W(p), представляет собой отношение выход/вход. Система, записанная через передаточные функции, более наглядна, и в отношении нее можно применять более-менее простые методы анализа и синтеза. Но о них позже, а сейчас рассмотрим на несложном примере, как же получаются такие функции.


Предположим у нас имеется звено, процессы происходящие в котором описываются следующим уравнением:



Слева выходная величина (и ее производная), справа входная (в сложных выражениях там тоже могут быть производные). T – какая-то постоянная времени, K – какой-то коэффициент. Теперь производим замену на оператор Лапласа:



Как было выше отмечено, передаточная функция равна отношению выход/вход:



Вот так мы получили передаточную функцию инерционного звена первого порядка. В ТАУ имеется несколько типовых звеньев (включая это), из которых можно составить любую систему, любое звено какой угодно сложности. Сейчас только отметим, что передаточные функции в зависимости от порядков числителя и знаменателя могут быть правильными и неправильными. Вышеприведенная функция является правильной, также говорят строго правильной, потому что порядок знаменателя больше порядка числителя. И это хорошо, она реализуема. Ниже приведена еще пара функций.



Функция типа 1 также правильная, но не строго. Степень числителя равна степени знаменателя, но ничего страшного, она тоже реализуема. А вот функция вроде 2 не реализуема в силу наличия квадрата в числителе и отсутствия квадрата или более высокой степени в знаменателе, то есть в данном случае будет какая-то некомпенсированная производная. Таким образом, за порядком в передаточных функциях надо строго следить!